Metamath Proof Explorer


Theorem 6lcm4e12

Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion 6lcm4e12 ( 6 lcm 4 ) = 1 2

Proof

Step Hyp Ref Expression
1 6cn 6 ∈ ℂ
2 4cn 4 ∈ ℂ
3 1 2 mulcli ( 6 · 4 ) ∈ ℂ
4 6nn0 6 ∈ ℕ0
5 4 nn0zi 6 ∈ ℤ
6 4z 4 ∈ ℤ
7 lcmcl ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 lcm 4 ) ∈ ℕ0 )
8 7 nn0cnd ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 lcm 4 ) ∈ ℂ )
9 5 6 8 mp2an ( 6 lcm 4 ) ∈ ℂ
10 gcdcl ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 gcd 4 ) ∈ ℕ0 )
11 10 nn0cnd ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 gcd 4 ) ∈ ℂ )
12 5 6 11 mp2an ( 6 gcd 4 ) ∈ ℂ
13 5 6 pm3.2i ( 6 ∈ ℤ ∧ 4 ∈ ℤ )
14 4ne0 4 ≠ 0
15 14 neii ¬ 4 = 0
16 15 intnan ¬ ( 6 = 0 ∧ 4 = 0 )
17 gcdn0cl ( ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) ∧ ¬ ( 6 = 0 ∧ 4 = 0 ) ) → ( 6 gcd 4 ) ∈ ℕ )
18 13 16 17 mp2an ( 6 gcd 4 ) ∈ ℕ
19 18 nnne0i ( 6 gcd 4 ) ≠ 0
20 12 19 pm3.2i ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 )
21 6nn 6 ∈ ℕ
22 4nn 4 ∈ ℕ
23 21 22 pm3.2i ( 6 ∈ ℕ ∧ 4 ∈ ℕ )
24 lcmgcdnn ( ( 6 ∈ ℕ ∧ 4 ∈ ℕ ) → ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) = ( 6 · 4 ) )
25 23 24 mp1i ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) = ( 6 · 4 ) )
26 25 eqcomd ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( 6 · 4 ) = ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) )
27 divmul3 ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) ↔ ( 6 · 4 ) = ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) ) )
28 26 27 mpbird ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) )
29 28 eqcomd ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( 6 lcm 4 ) = ( ( 6 · 4 ) / ( 6 gcd 4 ) ) )
30 3 9 20 29 mp3an ( 6 lcm 4 ) = ( ( 6 · 4 ) / ( 6 gcd 4 ) )
31 6gcd4e2 ( 6 gcd 4 ) = 2
32 31 oveq2i ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( ( 6 · 4 ) / 2 )
33 2cn 2 ∈ ℂ
34 2ne0 2 ≠ 0
35 1 2 33 34 divassi ( ( 6 · 4 ) / 2 ) = ( 6 · ( 4 / 2 ) )
36 4d2e2 ( 4 / 2 ) = 2
37 36 oveq2i ( 6 · ( 4 / 2 ) ) = ( 6 · 2 )
38 6t2e12 ( 6 · 2 ) = 1 2
39 35 37 38 3eqtri ( ( 6 · 4 ) / 2 ) = 1 2
40 30 32 39 3eqtri ( 6 lcm 4 ) = 1 2