Step |
Hyp |
Ref |
Expression |
1 |
|
6cn |
⊢ 6 ∈ ℂ |
2 |
|
4cn |
⊢ 4 ∈ ℂ |
3 |
1 2
|
mulcli |
⊢ ( 6 · 4 ) ∈ ℂ |
4 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
5 |
4
|
nn0zi |
⊢ 6 ∈ ℤ |
6 |
|
4z |
⊢ 4 ∈ ℤ |
7 |
|
lcmcl |
⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 lcm 4 ) ∈ ℕ0 ) |
8 |
7
|
nn0cnd |
⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 lcm 4 ) ∈ ℂ ) |
9 |
5 6 8
|
mp2an |
⊢ ( 6 lcm 4 ) ∈ ℂ |
10 |
|
gcdcl |
⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 gcd 4 ) ∈ ℕ0 ) |
11 |
10
|
nn0cnd |
⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 gcd 4 ) ∈ ℂ ) |
12 |
5 6 11
|
mp2an |
⊢ ( 6 gcd 4 ) ∈ ℂ |
13 |
5 6
|
pm3.2i |
⊢ ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) |
14 |
|
4ne0 |
⊢ 4 ≠ 0 |
15 |
14
|
neii |
⊢ ¬ 4 = 0 |
16 |
15
|
intnan |
⊢ ¬ ( 6 = 0 ∧ 4 = 0 ) |
17 |
|
gcdn0cl |
⊢ ( ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) ∧ ¬ ( 6 = 0 ∧ 4 = 0 ) ) → ( 6 gcd 4 ) ∈ ℕ ) |
18 |
13 16 17
|
mp2an |
⊢ ( 6 gcd 4 ) ∈ ℕ |
19 |
18
|
nnne0i |
⊢ ( 6 gcd 4 ) ≠ 0 |
20 |
12 19
|
pm3.2i |
⊢ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) |
21 |
|
6nn |
⊢ 6 ∈ ℕ |
22 |
|
4nn |
⊢ 4 ∈ ℕ |
23 |
21 22
|
pm3.2i |
⊢ ( 6 ∈ ℕ ∧ 4 ∈ ℕ ) |
24 |
|
lcmgcdnn |
⊢ ( ( 6 ∈ ℕ ∧ 4 ∈ ℕ ) → ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) = ( 6 · 4 ) ) |
25 |
23 24
|
mp1i |
⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) = ( 6 · 4 ) ) |
26 |
25
|
eqcomd |
⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( 6 · 4 ) = ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) ) |
27 |
|
divmul3 |
⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) ↔ ( 6 · 4 ) = ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) ) ) |
28 |
26 27
|
mpbird |
⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) ) |
29 |
28
|
eqcomd |
⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( 6 lcm 4 ) = ( ( 6 · 4 ) / ( 6 gcd 4 ) ) ) |
30 |
3 9 20 29
|
mp3an |
⊢ ( 6 lcm 4 ) = ( ( 6 · 4 ) / ( 6 gcd 4 ) ) |
31 |
|
6gcd4e2 |
⊢ ( 6 gcd 4 ) = 2 |
32 |
31
|
oveq2i |
⊢ ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( ( 6 · 4 ) / 2 ) |
33 |
|
2cn |
⊢ 2 ∈ ℂ |
34 |
|
2ne0 |
⊢ 2 ≠ 0 |
35 |
1 2 33 34
|
divassi |
⊢ ( ( 6 · 4 ) / 2 ) = ( 6 · ( 4 / 2 ) ) |
36 |
|
4d2e2 |
⊢ ( 4 / 2 ) = 2 |
37 |
36
|
oveq2i |
⊢ ( 6 · ( 4 / 2 ) ) = ( 6 · 2 ) |
38 |
|
6t2e12 |
⊢ ( 6 · 2 ) = ; 1 2 |
39 |
35 37 38
|
3eqtri |
⊢ ( ( 6 · 4 ) / 2 ) = ; 1 2 |
40 |
30 32 39
|
3eqtri |
⊢ ( 6 lcm 4 ) = ; 1 2 |