Metamath Proof Explorer


Theorem 6lt10

Description: 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 6lt10 6 < 1 0

Proof

Step Hyp Ref Expression
1 6lt7 6 < 7
2 7lt10 7 < 1 0
3 6re 6 ∈ ℝ
4 7re 7 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 6 < 7 ∧ 7 < 1 0 ) → 6 < 1 0 )
7 1 2 6 mp2an 6 < 1 0