Metamath Proof Explorer


Theorem 6lt8

Description: 6 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 6lt8 6 < 8

Proof

Step Hyp Ref Expression
1 6lt7 6 < 7
2 7lt8 7 < 8
3 6re 6 ∈ ℝ
4 7re 7 ∈ ℝ
5 8re 8 ∈ ℝ
6 3 4 5 lttri ( ( 6 < 7 ∧ 7 < 8 ) → 6 < 8 )
7 1 2 6 mp2an 6 < 8