Metamath Proof Explorer


Theorem 6nn

Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 6nn 6 ∈ ℕ

Proof

Step Hyp Ref Expression
1 df-6 6 = ( 5 + 1 )
2 5nn 5 ∈ ℕ
3 peano2nn ( 5 ∈ ℕ → ( 5 + 1 ) ∈ ℕ )
4 2 3 ax-mp ( 5 + 1 ) ∈ ℕ
5 1 4 eqeltri 6 ∈ ℕ