Metamath Proof Explorer


Theorem 6p3e9

Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 6p3e9 ( 6 + 3 ) = 9

Proof

Step Hyp Ref Expression
1 df-3 3 = ( 2 + 1 )
2 1 oveq2i ( 6 + 3 ) = ( 6 + ( 2 + 1 ) )
3 6cn 6 ∈ ℂ
4 2cn 2 ∈ ℂ
5 ax-1cn 1 ∈ ℂ
6 3 4 5 addassi ( ( 6 + 2 ) + 1 ) = ( 6 + ( 2 + 1 ) )
7 2 6 eqtr4i ( 6 + 3 ) = ( ( 6 + 2 ) + 1 )
8 df-9 9 = ( 8 + 1 )
9 6p2e8 ( 6 + 2 ) = 8
10 9 oveq1i ( ( 6 + 2 ) + 1 ) = ( 8 + 1 )
11 8 10 eqtr4i 9 = ( ( 6 + 2 ) + 1 )
12 7 11 eqtr4i ( 6 + 3 ) = 9