Metamath Proof Explorer
Description: Lemma for 6p5e11 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
6p5lem.1 |
⊢ 𝐴 ∈ ℕ0 |
|
|
6p5lem.2 |
⊢ 𝐷 ∈ ℕ0 |
|
|
6p5lem.3 |
⊢ 𝐸 ∈ ℕ0 |
|
|
6p5lem.4 |
⊢ 𝐵 = ( 𝐷 + 1 ) |
|
|
6p5lem.5 |
⊢ 𝐶 = ( 𝐸 + 1 ) |
|
|
6p5lem.6 |
⊢ ( 𝐴 + 𝐷 ) = ; 1 𝐸 |
|
Assertion |
6p5lem |
⊢ ( 𝐴 + 𝐵 ) = ; 1 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
6p5lem.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
6p5lem.2 |
⊢ 𝐷 ∈ ℕ0 |
3 |
|
6p5lem.3 |
⊢ 𝐸 ∈ ℕ0 |
4 |
|
6p5lem.4 |
⊢ 𝐵 = ( 𝐷 + 1 ) |
5 |
|
6p5lem.5 |
⊢ 𝐶 = ( 𝐸 + 1 ) |
6 |
|
6p5lem.6 |
⊢ ( 𝐴 + 𝐷 ) = ; 1 𝐸 |
7 |
4
|
oveq2i |
⊢ ( 𝐴 + 𝐵 ) = ( 𝐴 + ( 𝐷 + 1 ) ) |
8 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
9 |
2
|
nn0cni |
⊢ 𝐷 ∈ ℂ |
10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
11 |
8 9 10
|
addassi |
⊢ ( ( 𝐴 + 𝐷 ) + 1 ) = ( 𝐴 + ( 𝐷 + 1 ) ) |
12 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
13 |
5
|
eqcomi |
⊢ ( 𝐸 + 1 ) = 𝐶 |
14 |
12 3 13 6
|
decsuc |
⊢ ( ( 𝐴 + 𝐷 ) + 1 ) = ; 1 𝐶 |
15 |
7 11 14
|
3eqtr2i |
⊢ ( 𝐴 + 𝐵 ) = ; 1 𝐶 |