Metamath Proof Explorer
		
		
		
		Description:  Lemma for 6p5e11 and related theorems.  (Contributed by Mario
       Carneiro, 19-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 6p5lem.1 | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | 6p5lem.2 | ⊢ 𝐷  ∈  ℕ0 | 
					
						|  |  | 6p5lem.3 | ⊢ 𝐸  ∈  ℕ0 | 
					
						|  |  | 6p5lem.4 | ⊢ 𝐵  =  ( 𝐷  +  1 ) | 
					
						|  |  | 6p5lem.5 | ⊢ 𝐶  =  ( 𝐸  +  1 ) | 
					
						|  |  | 6p5lem.6 | ⊢ ( 𝐴  +  𝐷 )  =  ; 1 𝐸 | 
				
					|  | Assertion | 6p5lem | ⊢  ( 𝐴  +  𝐵 )  =  ; 1 𝐶 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6p5lem.1 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | 6p5lem.2 | ⊢ 𝐷  ∈  ℕ0 | 
						
							| 3 |  | 6p5lem.3 | ⊢ 𝐸  ∈  ℕ0 | 
						
							| 4 |  | 6p5lem.4 | ⊢ 𝐵  =  ( 𝐷  +  1 ) | 
						
							| 5 |  | 6p5lem.5 | ⊢ 𝐶  =  ( 𝐸  +  1 ) | 
						
							| 6 |  | 6p5lem.6 | ⊢ ( 𝐴  +  𝐷 )  =  ; 1 𝐸 | 
						
							| 7 | 4 | oveq2i | ⊢ ( 𝐴  +  𝐵 )  =  ( 𝐴  +  ( 𝐷  +  1 ) ) | 
						
							| 8 | 1 | nn0cni | ⊢ 𝐴  ∈  ℂ | 
						
							| 9 | 2 | nn0cni | ⊢ 𝐷  ∈  ℂ | 
						
							| 10 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 11 | 8 9 10 | addassi | ⊢ ( ( 𝐴  +  𝐷 )  +  1 )  =  ( 𝐴  +  ( 𝐷  +  1 ) ) | 
						
							| 12 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 13 | 5 | eqcomi | ⊢ ( 𝐸  +  1 )  =  𝐶 | 
						
							| 14 | 12 3 13 6 | decsuc | ⊢ ( ( 𝐴  +  𝐷 )  +  1 )  =  ; 1 𝐶 | 
						
							| 15 | 7 11 14 | 3eqtr2i | ⊢ ( 𝐴  +  𝐵 )  =  ; 1 𝐶 |