Metamath Proof Explorer


Theorem 6p6e12

Description: 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 6p6e12 ( 6 + 6 ) = 1 2

Proof

Step Hyp Ref Expression
1 6nn0 6 ∈ ℕ0
2 5nn0 5 ∈ ℕ0
3 1nn0 1 ∈ ℕ0
4 df-6 6 = ( 5 + 1 )
5 df-2 2 = ( 1 + 1 )
6 6p5e11 ( 6 + 5 ) = 1 1
7 1 2 3 4 5 6 6p5lem ( 6 + 6 ) = 1 2