Metamath Proof Explorer


Theorem 6ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypothesis 6ralbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 6ralbidv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸𝑢𝐹 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸𝑢𝐹 𝜒 ) )

Proof

Step Hyp Ref Expression
1 6ralbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 2ralbidv ( 𝜑 → ( ∀ 𝑡𝐸𝑢𝐹 𝜓 ↔ ∀ 𝑡𝐸𝑢𝐹 𝜒 ) )
3 2 4ralbidv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸𝑢𝐹 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸𝑢𝐹 𝜒 ) )