Metamath Proof Explorer


Theorem 6t4e24

Description: 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 6t4e24 ( 6 · 4 ) = 2 4

Proof

Step Hyp Ref Expression
1 6nn0 6 ∈ ℕ0
2 3nn0 3 ∈ ℕ0
3 df-4 4 = ( 3 + 1 )
4 6t3e18 ( 6 · 3 ) = 1 8
5 1nn0 1 ∈ ℕ0
6 8nn0 8 ∈ ℕ0
7 eqid 1 8 = 1 8
8 1p1e2 ( 1 + 1 ) = 2
9 4nn0 4 ∈ ℕ0
10 8p6e14 ( 8 + 6 ) = 1 4
11 5 6 1 7 8 9 10 decaddci ( 1 8 + 6 ) = 2 4
12 1 2 3 4 11 4t3lem ( 6 · 4 ) = 2 4