Metamath Proof Explorer
		
		
		
		Description:  6 times 6 equals 36.  (Contributed by Mario Carneiro, 19-Apr-2015)
     (Revised by AV, 6-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 6t6e36 | ⊢  ( 6  ·  6 )  =  ; 3 6 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 2 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 3 |  | df-6 | ⊢ 6  =  ( 5  +  1 ) | 
						
							| 4 |  | 6t5e30 | ⊢ ( 6  ·  5 )  =  ; 3 0 | 
						
							| 5 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 6 | 5 | dec0u | ⊢ ( ; 1 0  ·  3 )  =  ; 3 0 | 
						
							| 7 | 4 6 | eqtr4i | ⊢ ( 6  ·  5 )  =  ( ; 1 0  ·  3 ) | 
						
							| 8 |  | dfdec10 | ⊢ ; 3 6  =  ( ( ; 1 0  ·  3 )  +  6 ) | 
						
							| 9 | 8 | eqcomi | ⊢ ( ( ; 1 0  ·  3 )  +  6 )  =  ; 3 6 | 
						
							| 10 | 1 2 3 7 9 | 4t3lem | ⊢ ( 6  ·  6 )  =  ; 3 6 |