Metamath Proof Explorer


Theorem 7lt10

Description: 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 7lt10 7 < 1 0

Proof

Step Hyp Ref Expression
1 7lt8 7 < 8
2 8lt10 8 < 1 0
3 7re 7 ∈ ℝ
4 8re 8 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 7 < 8 ∧ 8 < 1 0 ) → 7 < 1 0 )
7 1 2 6 mp2an 7 < 1 0