Metamath Proof Explorer


Theorem 7m1e6

Description: 7 - 1 = 6. (Contributed by AV, 6-Sep-2021)

Ref Expression
Assertion 7m1e6 ( 7 − 1 ) = 6

Proof

Step Hyp Ref Expression
1 6cn 6 ∈ ℂ
2 ax-1cn 1 ∈ ℂ
3 df-7 7 = ( 6 + 1 )
4 1 2 3 mvrraddi ( 7 − 1 ) = 6