Metamath Proof Explorer


Theorem 7nn

Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 7nn 7 ∈ ℕ

Proof

Step Hyp Ref Expression
1 df-7 7 = ( 6 + 1 )
2 6nn 6 ∈ ℕ
3 peano2nn ( 6 ∈ ℕ → ( 6 + 1 ) ∈ ℕ )
4 2 3 ax-mp ( 6 + 1 ) ∈ ℕ
5 1 4 eqeltri 7 ∈ ℕ