Metamath Proof Explorer


Theorem 7p6e13

Description: 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7p6e13 ( 7 + 6 ) = 1 3

Proof

Step Hyp Ref Expression
1 7nn0 7 ∈ ℕ0
2 5nn0 5 ∈ ℕ0
3 2nn0 2 ∈ ℕ0
4 df-6 6 = ( 5 + 1 )
5 df-3 3 = ( 2 + 1 )
6 7p5e12 ( 7 + 5 ) = 1 2
7 1 2 3 4 5 6 6p5lem ( 7 + 6 ) = 1 3