Metamath Proof Explorer


Theorem 7p7e14

Description: 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7p7e14 ( 7 + 7 ) = 1 4

Proof

Step Hyp Ref Expression
1 7nn0 7 ∈ ℕ0
2 6nn0 6 ∈ ℕ0
3 3nn0 3 ∈ ℕ0
4 df-7 7 = ( 6 + 1 )
5 df-4 4 = ( 3 + 1 )
6 7p6e13 ( 7 + 6 ) = 1 3
7 1 2 3 4 5 6 6p5lem ( 7 + 7 ) = 1 4