Metamath Proof Explorer


Theorem 7prm

Description: 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 7prm 7 ∈ ℙ

Proof

Step Hyp Ref Expression
1 7nn 7 ∈ ℕ
2 1lt7 1 < 7
3 2nn 2 ∈ ℕ
4 3nn0 3 ∈ ℕ0
5 1nn 1 ∈ ℕ
6 3cn 3 ∈ ℂ
7 2cn 2 ∈ ℂ
8 3t2e6 ( 3 · 2 ) = 6
9 6 7 8 mulcomli ( 2 · 3 ) = 6
10 9 oveq1i ( ( 2 · 3 ) + 1 ) = ( 6 + 1 )
11 df-7 7 = ( 6 + 1 )
12 10 11 eqtr4i ( ( 2 · 3 ) + 1 ) = 7
13 1lt2 1 < 2
14 3 4 5 12 13 ndvdsi ¬ 2 ∥ 7
15 3nn 3 ∈ ℕ
16 2nn0 2 ∈ ℕ0
17 8 oveq1i ( ( 3 · 2 ) + 1 ) = ( 6 + 1 )
18 17 11 eqtr4i ( ( 3 · 2 ) + 1 ) = 7
19 1lt3 1 < 3
20 15 16 5 18 19 ndvdsi ¬ 3 ∥ 7
21 5nn0 5 ∈ ℕ0
22 7nn0 7 ∈ ℕ0
23 7lt10 7 < 1 0
24 3 21 22 23 declti 7 < 2 5
25 1 2 14 20 24 prmlem1 7 ∈ ℙ