Metamath Proof Explorer


Theorem 7t3e21

Description: 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7t3e21 ( 7 · 3 ) = 2 1

Proof

Step Hyp Ref Expression
1 7nn0 7 ∈ ℕ0
2 2nn0 2 ∈ ℕ0
3 df-3 3 = ( 2 + 1 )
4 7t2e14 ( 7 · 2 ) = 1 4
5 1nn0 1 ∈ ℕ0
6 4nn0 4 ∈ ℕ0
7 eqid 1 4 = 1 4
8 1p1e2 ( 1 + 1 ) = 2
9 1 nn0cni 7 ∈ ℂ
10 6 nn0cni 4 ∈ ℂ
11 7p4e11 ( 7 + 4 ) = 1 1
12 9 10 11 addcomli ( 4 + 7 ) = 1 1
13 5 6 1 7 8 5 12 decaddci ( 1 4 + 7 ) = 2 1
14 1 2 3 4 13 4t3lem ( 7 · 3 ) = 2 1