Metamath Proof Explorer


Theorem 7t5e35

Description: 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7t5e35 ( 7 · 5 ) = 3 5

Proof

Step Hyp Ref Expression
1 7nn0 7 ∈ ℕ0
2 4nn0 4 ∈ ℕ0
3 df-5 5 = ( 4 + 1 )
4 7t4e28 ( 7 · 4 ) = 2 8
5 2nn0 2 ∈ ℕ0
6 8nn0 8 ∈ ℕ0
7 eqid 2 8 = 2 8
8 2p1e3 ( 2 + 1 ) = 3
9 5nn0 5 ∈ ℕ0
10 8p7e15 ( 8 + 7 ) = 1 5
11 5 6 1 7 8 9 10 decaddci ( 2 8 + 7 ) = 3 5
12 1 2 3 4 11 4t3lem ( 7 · 5 ) = 3 5