Description: 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | 83prm | ⊢ ; 8 3 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
2 | 3nn | ⊢ 3 ∈ ℕ | |
3 | 1 2 | decnncl | ⊢ ; 8 3 ∈ ℕ |
4 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
5 | 1 4 | deccl | ⊢ ; 8 4 ∈ ℕ0 |
6 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
8 | 3lt10 | ⊢ 3 < ; 1 0 | |
9 | 8nn | ⊢ 8 ∈ ℕ | |
10 | 8lt10 | ⊢ 8 < ; 1 0 | |
11 | 9 4 1 10 | declti | ⊢ 8 < ; 8 4 |
12 | 1 5 6 7 8 11 | decltc | ⊢ ; 8 3 < ; ; 8 4 1 |
13 | 1lt10 | ⊢ 1 < ; 1 0 | |
14 | 9 6 7 13 | declti | ⊢ 1 < ; 8 3 |
15 | 2cn | ⊢ 2 ∈ ℂ | |
16 | 15 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
17 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
18 | 1 7 16 17 | dec2dvds | ⊢ ¬ 2 ∥ ; 8 3 |
19 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
20 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
21 | 19 20 | deccl | ⊢ ; 2 7 ∈ ℕ0 |
22 | 2nn | ⊢ 2 ∈ ℕ | |
23 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
24 | eqid | ⊢ ; 2 7 = ; 2 7 | |
25 | 19 | dec0h | ⊢ 2 = ; 0 2 |
26 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
27 | 15 | addid2i | ⊢ ( 0 + 2 ) = 2 |
28 | 26 27 | oveq12i | ⊢ ( ( 3 · 2 ) + ( 0 + 2 ) ) = ( 6 + 2 ) |
29 | 6p2e8 | ⊢ ( 6 + 2 ) = 8 | |
30 | 28 29 | eqtri | ⊢ ( ( 3 · 2 ) + ( 0 + 2 ) ) = 8 |
31 | 20 | nn0cni | ⊢ 7 ∈ ℂ |
32 | 3cn | ⊢ 3 ∈ ℂ | |
33 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
34 | 31 32 33 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
35 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
36 | 19 7 19 34 35 | decaddi | ⊢ ( ( 3 · 7 ) + 2 ) = ; 2 3 |
37 | 19 20 23 19 24 25 6 6 19 30 36 | decma2c | ⊢ ( ( 3 · ; 2 7 ) + 2 ) = ; 8 3 |
38 | 2lt3 | ⊢ 2 < 3 | |
39 | 2 21 22 37 38 | ndvdsi | ⊢ ¬ 3 ∥ ; 8 3 |
40 | 3lt5 | ⊢ 3 < 5 | |
41 | 1 2 40 | dec5dvds | ⊢ ¬ 5 ∥ ; 8 3 |
42 | 7nn | ⊢ 7 ∈ ℕ | |
43 | 7 7 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
44 | 6nn | ⊢ 6 ∈ ℕ | |
45 | 44 | nnnn0i | ⊢ 6 ∈ ℕ0 |
46 | eqid | ⊢ ; 1 1 = ; 1 1 | |
47 | 45 | dec0h | ⊢ 6 = ; 0 6 |
48 | 31 | mulid1i | ⊢ ( 7 · 1 ) = 7 |
49 | ax-1cn | ⊢ 1 ∈ ℂ | |
50 | 49 | addid2i | ⊢ ( 0 + 1 ) = 1 |
51 | 48 50 | oveq12i | ⊢ ( ( 7 · 1 ) + ( 0 + 1 ) ) = ( 7 + 1 ) |
52 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
53 | 51 52 | eqtri | ⊢ ( ( 7 · 1 ) + ( 0 + 1 ) ) = 8 |
54 | 48 | oveq1i | ⊢ ( ( 7 · 1 ) + 6 ) = ( 7 + 6 ) |
55 | 7p6e13 | ⊢ ( 7 + 6 ) = ; 1 3 | |
56 | 54 55 | eqtri | ⊢ ( ( 7 · 1 ) + 6 ) = ; 1 3 |
57 | 7 7 23 45 46 47 20 6 7 53 56 | decma2c | ⊢ ( ( 7 · ; 1 1 ) + 6 ) = ; 8 3 |
58 | 6lt7 | ⊢ 6 < 7 | |
59 | 42 43 44 57 58 | ndvdsi | ⊢ ¬ 7 ∥ ; 8 3 |
60 | 1nn | ⊢ 1 ∈ ℕ | |
61 | 7 60 | decnncl | ⊢ ; 1 1 ∈ ℕ |
62 | 61 | nncni | ⊢ ; 1 1 ∈ ℂ |
63 | 62 31 | mulcomi | ⊢ ( ; 1 1 · 7 ) = ( 7 · ; 1 1 ) |
64 | 63 | oveq1i | ⊢ ( ( ; 1 1 · 7 ) + 6 ) = ( ( 7 · ; 1 1 ) + 6 ) |
65 | 64 57 | eqtri | ⊢ ( ( ; 1 1 · 7 ) + 6 ) = ; 8 3 |
66 | 6lt10 | ⊢ 6 < ; 1 0 | |
67 | 60 7 45 66 | declti | ⊢ 6 < ; 1 1 |
68 | 61 20 44 65 67 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; 8 3 |
69 | 7 2 | decnncl | ⊢ ; 1 3 ∈ ℕ |
70 | 5nn | ⊢ 5 ∈ ℕ | |
71 | 70 | nnnn0i | ⊢ 5 ∈ ℕ0 |
72 | eqid | ⊢ ; 1 3 = ; 1 3 | |
73 | 71 | dec0h | ⊢ 5 = ; 0 5 |
74 | 6cn | ⊢ 6 ∈ ℂ | |
75 | 74 | mulid2i | ⊢ ( 1 · 6 ) = 6 |
76 | 75 27 | oveq12i | ⊢ ( ( 1 · 6 ) + ( 0 + 2 ) ) = ( 6 + 2 ) |
77 | 76 29 | eqtri | ⊢ ( ( 1 · 6 ) + ( 0 + 2 ) ) = 8 |
78 | 6t3e18 | ⊢ ( 6 · 3 ) = ; 1 8 | |
79 | 74 32 78 | mulcomli | ⊢ ( 3 · 6 ) = ; 1 8 |
80 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
81 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
82 | 7 1 71 79 80 6 81 | decaddci | ⊢ ( ( 3 · 6 ) + 5 ) = ; 2 3 |
83 | 7 6 23 71 72 73 45 6 19 77 82 | decmac | ⊢ ( ( ; 1 3 · 6 ) + 5 ) = ; 8 3 |
84 | 5lt10 | ⊢ 5 < ; 1 0 | |
85 | 60 6 71 84 | declti | ⊢ 5 < ; 1 3 |
86 | 69 45 70 83 85 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; 8 3 |
87 | 7 42 | decnncl | ⊢ ; 1 7 ∈ ℕ |
88 | 7 70 | decnncl | ⊢ ; 1 5 ∈ ℕ |
89 | eqid | ⊢ ; 1 7 = ; 1 7 | |
90 | eqid | ⊢ ; 1 5 = ; 1 5 | |
91 | 4 | nn0cni | ⊢ 4 ∈ ℂ |
92 | 91 | mulid2i | ⊢ ( 1 · 4 ) = 4 |
93 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
94 | 32 49 93 | addcomli | ⊢ ( 1 + 3 ) = 4 |
95 | 92 94 | oveq12i | ⊢ ( ( 1 · 4 ) + ( 1 + 3 ) ) = ( 4 + 4 ) |
96 | 4p4e8 | ⊢ ( 4 + 4 ) = 8 | |
97 | 95 96 | eqtri | ⊢ ( ( 1 · 4 ) + ( 1 + 3 ) ) = 8 |
98 | 7t4e28 | ⊢ ( 7 · 4 ) = ; 2 8 | |
99 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
100 | 19 1 71 98 99 6 81 | decaddci | ⊢ ( ( 7 · 4 ) + 5 ) = ; 3 3 |
101 | 7 20 7 71 89 90 4 6 6 97 100 | decmac | ⊢ ( ( ; 1 7 · 4 ) + ; 1 5 ) = ; 8 3 |
102 | 5lt7 | ⊢ 5 < 7 | |
103 | 7 71 42 102 | declt | ⊢ ; 1 5 < ; 1 7 |
104 | 87 4 88 101 103 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; 8 3 |
105 | 9nn | ⊢ 9 ∈ ℕ | |
106 | 7 105 | decnncl | ⊢ ; 1 9 ∈ ℕ |
107 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
108 | eqid | ⊢ ; 1 9 = ; 1 9 | |
109 | 20 | dec0h | ⊢ 7 = ; 0 7 |
110 | 91 | addid2i | ⊢ ( 0 + 4 ) = 4 |
111 | 92 110 | oveq12i | ⊢ ( ( 1 · 4 ) + ( 0 + 4 ) ) = ( 4 + 4 ) |
112 | 111 96 | eqtri | ⊢ ( ( 1 · 4 ) + ( 0 + 4 ) ) = 8 |
113 | 9t4e36 | ⊢ ( 9 · 4 ) = ; 3 6 | |
114 | 31 74 55 | addcomli | ⊢ ( 6 + 7 ) = ; 1 3 |
115 | 6 45 20 113 93 6 114 | decaddci | ⊢ ( ( 9 · 4 ) + 7 ) = ; 4 3 |
116 | 7 107 23 20 108 109 4 6 4 112 115 | decmac | ⊢ ( ( ; 1 9 · 4 ) + 7 ) = ; 8 3 |
117 | 7lt10 | ⊢ 7 < ; 1 0 | |
118 | 60 107 20 117 | declti | ⊢ 7 < ; 1 9 |
119 | 106 4 42 116 118 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; 8 3 |
120 | 19 2 | decnncl | ⊢ ; 2 3 ∈ ℕ |
121 | 4nn | ⊢ 4 ∈ ℕ | |
122 | 7 121 | decnncl | ⊢ ; 1 4 ∈ ℕ |
123 | eqid | ⊢ ; 2 3 = ; 2 3 | |
124 | eqid | ⊢ ; 1 4 = ; 1 4 | |
125 | 32 15 26 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
126 | 125 80 | oveq12i | ⊢ ( ( 2 · 3 ) + ( 1 + 1 ) ) = ( 6 + 2 ) |
127 | 126 29 | eqtri | ⊢ ( ( 2 · 3 ) + ( 1 + 1 ) ) = 8 |
128 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
129 | 128 | oveq1i | ⊢ ( ( 3 · 3 ) + 4 ) = ( 9 + 4 ) |
130 | 9p4e13 | ⊢ ( 9 + 4 ) = ; 1 3 | |
131 | 129 130 | eqtri | ⊢ ( ( 3 · 3 ) + 4 ) = ; 1 3 |
132 | 19 6 7 4 123 124 6 6 7 127 131 | decmac | ⊢ ( ( ; 2 3 · 3 ) + ; 1 4 ) = ; 8 3 |
133 | 4lt10 | ⊢ 4 < ; 1 0 | |
134 | 1lt2 | ⊢ 1 < 2 | |
135 | 7 19 4 6 133 134 | decltc | ⊢ ; 1 4 < ; 2 3 |
136 | 120 6 122 132 135 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; 8 3 |
137 | 3 12 14 18 39 41 59 68 86 104 119 136 | prmlem2 | ⊢ ; 8 3 ∈ ℙ |