Metamath Proof Explorer


Theorem 8even

Description: 8 is an even number. (Contributed by AV, 23-Jul-2020)

Ref Expression
Assertion 8even 8 ∈ Even

Proof

Step Hyp Ref Expression
1 8nn 8 ∈ ℕ
2 1 nnzi 8 ∈ ℤ
3 4t2e8 ( 4 · 2 ) = 8
4 3 eqcomi 8 = ( 4 · 2 )
5 4 oveq1i ( 8 / 2 ) = ( ( 4 · 2 ) / 2 )
6 4cn 4 ∈ ℂ
7 2cn 2 ∈ ℂ
8 2ne0 2 ≠ 0
9 6 7 8 divcan4i ( ( 4 · 2 ) / 2 ) = 4
10 5 9 eqtri ( 8 / 2 ) = 4
11 4z 4 ∈ ℤ
12 10 11 eqeltri ( 8 / 2 ) ∈ ℤ
13 iseven ( 8 ∈ Even ↔ ( 8 ∈ ℤ ∧ ( 8 / 2 ) ∈ ℤ ) )
14 2 12 13 mpbir2an 8 ∈ Even