| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							8even | 
							⊢ 8  ∈   Even   | 
						
						
							| 2 | 
							
								
							 | 
							5prm | 
							⊢ 5  ∈  ℙ  | 
						
						
							| 3 | 
							
								
							 | 
							3prm | 
							⊢ 3  ∈  ℙ  | 
						
						
							| 4 | 
							
								
							 | 
							5odd | 
							⊢ 5  ∈   Odd   | 
						
						
							| 5 | 
							
								
							 | 
							3odd | 
							⊢ 3  ∈   Odd   | 
						
						
							| 6 | 
							
								
							 | 
							5p3e8 | 
							⊢ ( 5  +  3 )  =  8  | 
						
						
							| 7 | 
							
								6
							 | 
							eqcomi | 
							⊢ 8  =  ( 5  +  3 )  | 
						
						
							| 8 | 
							
								4 5 7
							 | 
							3pm3.2i | 
							⊢ ( 5  ∈   Odd   ∧  3  ∈   Odd   ∧  8  =  ( 5  +  3 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑝  =  5  →  ( 𝑝  ∈   Odd   ↔  5  ∈   Odd  ) )  | 
						
						
							| 10 | 
							
								
							 | 
							biidd | 
							⊢ ( 𝑝  =  5  →  ( 𝑞  ∈   Odd   ↔  𝑞  ∈   Odd  ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑝  =  5  →  ( 𝑝  +  𝑞 )  =  ( 5  +  𝑞 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqeq2d | 
							⊢ ( 𝑝  =  5  →  ( 8  =  ( 𝑝  +  𝑞 )  ↔  8  =  ( 5  +  𝑞 ) ) )  | 
						
						
							| 13 | 
							
								9 10 12
							 | 
							3anbi123d | 
							⊢ ( 𝑝  =  5  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) )  ↔  ( 5  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 5  +  𝑞 ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							biidd | 
							⊢ ( 𝑞  =  3  →  ( 5  ∈   Odd   ↔  5  ∈   Odd  ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑞  =  3  →  ( 𝑞  ∈   Odd   ↔  3  ∈   Odd  ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑞  =  3  →  ( 5  +  𝑞 )  =  ( 5  +  3 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq2d | 
							⊢ ( 𝑞  =  3  →  ( 8  =  ( 5  +  𝑞 )  ↔  8  =  ( 5  +  3 ) ) )  | 
						
						
							| 18 | 
							
								14 15 17
							 | 
							3anbi123d | 
							⊢ ( 𝑞  =  3  →  ( ( 5  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 5  +  𝑞 ) )  ↔  ( 5  ∈   Odd   ∧  3  ∈   Odd   ∧  8  =  ( 5  +  3 ) ) ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							rspc2ev | 
							⊢ ( ( 5  ∈  ℙ  ∧  3  ∈  ℙ  ∧  ( 5  ∈   Odd   ∧  3  ∈   Odd   ∧  8  =  ( 5  +  3 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) ) )  | 
						
						
							| 20 | 
							
								2 3 8 19
							 | 
							mp3an | 
							⊢ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							isgbe | 
							⊢ ( 8  ∈   GoldbachEven   ↔  ( 8  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) ) ) )  | 
						
						
							| 22 | 
							
								1 20 21
							 | 
							mpbir2an | 
							⊢ 8  ∈   GoldbachEven   |