Metamath Proof Explorer


Theorem 8lt10

Description: 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 8lt10 8 < 1 0

Proof

Step Hyp Ref Expression
1 8lt9 8 < 9
2 9lt10 9 < 1 0
3 8re 8 ∈ ℝ
4 9re 9 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 8 < 9 ∧ 9 < 1 0 ) → 8 < 1 0 )
7 1 2 6 mp2an 8 < 1 0