Metamath Proof Explorer


Theorem 8m1e7

Description: 8 - 1 = 7. (Contributed by AV, 6-Sep-2021)

Ref Expression
Assertion 8m1e7 ( 8 − 1 ) = 7

Proof

Step Hyp Ref Expression
1 7cn 7 ∈ ℂ
2 ax-1cn 1 ∈ ℂ
3 df-8 8 = ( 7 + 1 )
4 1 2 3 mvrraddi ( 8 − 1 ) = 7