Metamath Proof Explorer


Theorem 8nn

Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 8nn 8 ∈ ℕ

Proof

Step Hyp Ref Expression
1 df-8 8 = ( 7 + 1 )
2 7nn 7 ∈ ℕ
3 peano2nn ( 7 ∈ ℕ → ( 7 + 1 ) ∈ ℕ )
4 2 3 ax-mp ( 7 + 1 ) ∈ ℕ
5 1 4 eqeltri 8 ∈ ℕ