Metamath Proof Explorer


Theorem 8p2e10

Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007) (Revised by Stanislas Polu, 7-Apr-2020) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 8p2e10 ( 8 + 2 ) = 1 0

Proof

Step Hyp Ref Expression
1 df-2 2 = ( 1 + 1 )
2 1 oveq2i ( 8 + 2 ) = ( 8 + ( 1 + 1 ) )
3 8cn 8 ∈ ℂ
4 ax-1cn 1 ∈ ℂ
5 3 4 4 addassi ( ( 8 + 1 ) + 1 ) = ( 8 + ( 1 + 1 ) )
6 2 5 eqtr4i ( 8 + 2 ) = ( ( 8 + 1 ) + 1 )
7 df-9 9 = ( 8 + 1 )
8 7 oveq1i ( 9 + 1 ) = ( ( 8 + 1 ) + 1 )
9 9p1e10 ( 9 + 1 ) = 1 0
10 6 8 9 3eqtr2i ( 8 + 2 ) = 1 0