Metamath Proof Explorer


Theorem 8p4e12

Description: 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8p4e12 ( 8 + 4 ) = 1 2

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 3nn0 3 ∈ ℕ0
3 1nn0 1 ∈ ℕ0
4 df-4 4 = ( 3 + 1 )
5 df-2 2 = ( 1 + 1 )
6 8p3e11 ( 8 + 3 ) = 1 1
7 1 2 3 4 5 6 6p5lem ( 8 + 4 ) = 1 2