Metamath Proof Explorer


Theorem 8p6e14

Description: 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8p6e14 ( 8 + 6 ) = 1 4

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 5nn0 5 ∈ ℕ0
3 3nn0 3 ∈ ℕ0
4 df-6 6 = ( 5 + 1 )
5 df-4 4 = ( 3 + 1 )
6 8p5e13 ( 8 + 5 ) = 1 3
7 1 2 3 4 5 6 6p5lem ( 8 + 6 ) = 1 4