Metamath Proof Explorer


Theorem 8p7e15

Description: 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8p7e15 ( 8 + 7 ) = 1 5

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 6nn0 6 ∈ ℕ0
3 4nn0 4 ∈ ℕ0
4 df-7 7 = ( 6 + 1 )
5 df-5 5 = ( 4 + 1 )
6 8p6e14 ( 8 + 6 ) = 1 4
7 1 2 3 4 5 6 6p5lem ( 8 + 7 ) = 1 5