Metamath Proof Explorer


Theorem 8p8e16

Description: 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8p8e16 ( 8 + 8 ) = 1 6

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 7nn0 7 ∈ ℕ0
3 5nn0 5 ∈ ℕ0
4 df-8 8 = ( 7 + 1 )
5 df-6 6 = ( 5 + 1 )
6 8p7e15 ( 8 + 7 ) = 1 5
7 1 2 3 4 5 6 6p5lem ( 8 + 8 ) = 1 6