Metamath Proof Explorer


Theorem 8t3e24

Description: 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8t3e24 ( 8 · 3 ) = 2 4

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 2nn0 2 ∈ ℕ0
3 df-3 3 = ( 2 + 1 )
4 8t2e16 ( 8 · 2 ) = 1 6
5 1nn0 1 ∈ ℕ0
6 6nn0 6 ∈ ℕ0
7 eqid 1 6 = 1 6
8 1p1e2 ( 1 + 1 ) = 2
9 4nn0 4 ∈ ℕ0
10 1 nn0cni 8 ∈ ℂ
11 6 nn0cni 6 ∈ ℂ
12 8p6e14 ( 8 + 6 ) = 1 4
13 10 11 12 addcomli ( 6 + 8 ) = 1 4
14 5 6 1 7 8 9 13 decaddci ( 1 6 + 8 ) = 2 4
15 1 2 3 4 14 4t3lem ( 8 · 3 ) = 2 4