Metamath Proof Explorer


Theorem 8t7e56

Description: 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8t7e56 ( 8 · 7 ) = 5 6

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 6nn0 6 ∈ ℕ0
3 df-7 7 = ( 6 + 1 )
4 8t6e48 ( 8 · 6 ) = 4 8
5 4nn0 4 ∈ ℕ0
6 eqid 4 8 = 4 8
7 4p1e5 ( 4 + 1 ) = 5
8 8p8e16 ( 8 + 8 ) = 1 6
9 5 1 1 6 7 2 8 decaddci ( 4 8 + 8 ) = 5 6
10 1 2 3 4 9 4t3lem ( 8 · 7 ) = 5 6