Metamath Proof Explorer


Theorem 8t8e64

Description: 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8t8e64 ( 8 · 8 ) = 6 4

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 7nn0 7 ∈ ℕ0
3 df-8 8 = ( 7 + 1 )
4 8t7e56 ( 8 · 7 ) = 5 6
5 5nn0 5 ∈ ℕ0
6 6nn0 6 ∈ ℕ0
7 eqid 5 6 = 5 6
8 5p1e6 ( 5 + 1 ) = 6
9 4nn0 4 ∈ ℕ0
10 1 nn0cni 8 ∈ ℂ
11 6 nn0cni 6 ∈ ℂ
12 8p6e14 ( 8 + 6 ) = 1 4
13 10 11 12 addcomli ( 6 + 8 ) = 1 4
14 5 6 1 7 8 9 13 decaddci ( 5 6 + 8 ) = 6 4
15 1 2 3 4 14 4t3lem ( 8 · 8 ) = 6 4