Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
8re |
⊢ 8 ∈ ℝ |
3 |
2
|
recni |
⊢ 8 ∈ ℂ |
4 |
|
4cn |
⊢ 4 ∈ ℂ |
5 |
|
3cn |
⊢ 3 ∈ ℂ |
6 |
|
8pos |
⊢ 0 < 8 |
7 |
2 6
|
gt0ne0ii |
⊢ 8 ≠ 0 |
8 |
|
3ne0 |
⊢ 3 ≠ 0 |
9 |
1 3 4 5 7 8
|
divmuldivi |
⊢ ( ( 1 / 8 ) · ( 4 / 3 ) ) = ( ( 1 · 4 ) / ( 8 · 3 ) ) |
10 |
1 4
|
mulcomi |
⊢ ( 1 · 4 ) = ( 4 · 1 ) |
11 |
|
2cn |
⊢ 2 ∈ ℂ |
12 |
4 11 5
|
mul32i |
⊢ ( ( 4 · 2 ) · 3 ) = ( ( 4 · 3 ) · 2 ) |
13 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
14 |
13
|
oveq1i |
⊢ ( ( 4 · 2 ) · 3 ) = ( 8 · 3 ) |
15 |
12 14
|
eqtr3i |
⊢ ( ( 4 · 3 ) · 2 ) = ( 8 · 3 ) |
16 |
4 5 11
|
mulassi |
⊢ ( ( 4 · 3 ) · 2 ) = ( 4 · ( 3 · 2 ) ) |
17 |
15 16
|
eqtr3i |
⊢ ( 8 · 3 ) = ( 4 · ( 3 · 2 ) ) |
18 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
19 |
18
|
oveq2i |
⊢ ( 4 · ( 3 · 2 ) ) = ( 4 · 6 ) |
20 |
17 19
|
eqtri |
⊢ ( 8 · 3 ) = ( 4 · 6 ) |
21 |
10 20
|
oveq12i |
⊢ ( ( 1 · 4 ) / ( 8 · 3 ) ) = ( ( 4 · 1 ) / ( 4 · 6 ) ) |
22 |
9 21
|
eqtri |
⊢ ( ( 1 / 8 ) · ( 4 / 3 ) ) = ( ( 4 · 1 ) / ( 4 · 6 ) ) |
23 |
|
6re |
⊢ 6 ∈ ℝ |
24 |
23
|
recni |
⊢ 6 ∈ ℂ |
25 |
|
6pos |
⊢ 0 < 6 |
26 |
23 25
|
gt0ne0ii |
⊢ 6 ≠ 0 |
27 |
|
4ne0 |
⊢ 4 ≠ 0 |
28 |
|
divcan5 |
⊢ ( ( 1 ∈ ℂ ∧ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 4 · 1 ) / ( 4 · 6 ) ) = ( 1 / 6 ) ) |
29 |
1 28
|
mp3an1 |
⊢ ( ( ( 6 ∈ ℂ ∧ 6 ≠ 0 ) ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 4 · 1 ) / ( 4 · 6 ) ) = ( 1 / 6 ) ) |
30 |
24 26 4 27 29
|
mp4an |
⊢ ( ( 4 · 1 ) / ( 4 · 6 ) ) = ( 1 / 6 ) |
31 |
22 30
|
eqtri |
⊢ ( ( 1 / 8 ) · ( 4 / 3 ) ) = ( 1 / 6 ) |