Metamath Proof Explorer


Theorem 9p1e10

Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015) (Revised by Stanislas Polu, 7-Apr-2020) (Revised by AV, 1-Aug-2021)

Ref Expression
Assertion 9p1e10 ( 9 + 1 ) = 1 0

Proof

Step Hyp Ref Expression
1 df-dec 1 0 = ( ( ( 9 + 1 ) · 1 ) + 0 )
2 9nn 9 ∈ ℕ
3 1nn 1 ∈ ℕ
4 nnaddcl ( ( 9 ∈ ℕ ∧ 1 ∈ ℕ ) → ( 9 + 1 ) ∈ ℕ )
5 2 3 4 mp2an ( 9 + 1 ) ∈ ℕ
6 5 nncni ( 9 + 1 ) ∈ ℂ
7 6 mulid1i ( ( 9 + 1 ) · 1 ) = ( 9 + 1 )
8 7 oveq1i ( ( ( 9 + 1 ) · 1 ) + 0 ) = ( ( 9 + 1 ) + 0 )
9 6 addid1i ( ( 9 + 1 ) + 0 ) = ( 9 + 1 )
10 1 8 9 3eqtrri ( 9 + 1 ) = 1 0