Metamath Proof Explorer


Theorem 9p2e11

Description: 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 9p2e11 ( 9 + 2 ) = 1 1

Proof

Step Hyp Ref Expression
1 9nn0 9 ∈ ℕ0
2 1nn0 1 ∈ ℕ0
3 0nn0 0 ∈ ℕ0
4 df-2 2 = ( 1 + 1 )
5 1e0p1 1 = ( 0 + 1 )
6 9p1e10 ( 9 + 1 ) = 1 0
7 1 2 3 4 5 6 6p5lem ( 9 + 2 ) = 1 1