Metamath Proof Explorer


Theorem 9p7e16

Description: 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9p7e16 ( 9 + 7 ) = 1 6

Proof

Step Hyp Ref Expression
1 9nn0 9 ∈ ℕ0
2 6nn0 6 ∈ ℕ0
3 5nn0 5 ∈ ℕ0
4 df-7 7 = ( 6 + 1 )
5 df-6 6 = ( 5 + 1 )
6 9p6e15 ( 9 + 6 ) = 1 5
7 1 2 3 4 5 6 6p5lem ( 9 + 7 ) = 1 6