Metamath Proof Explorer


Theorem 9p8e17

Description: 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9p8e17 ( 9 + 8 ) = 1 7

Proof

Step Hyp Ref Expression
1 9nn0 9 ∈ ℕ0
2 7nn0 7 ∈ ℕ0
3 6nn0 6 ∈ ℕ0
4 df-8 8 = ( 7 + 1 )
5 df-7 7 = ( 6 + 1 )
6 9p7e16 ( 9 + 7 ) = 1 6
7 1 2 3 4 5 6 6p5lem ( 9 + 8 ) = 1 7