Metamath Proof Explorer


Theorem 9p9e18

Description: 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9p9e18 ( 9 + 9 ) = 1 8

Proof

Step Hyp Ref Expression
1 9nn0 9 ∈ ℕ0
2 8nn0 8 ∈ ℕ0
3 7nn0 7 ∈ ℕ0
4 df-9 9 = ( 8 + 1 )
5 df-8 8 = ( 7 + 1 )
6 9p8e17 ( 9 + 8 ) = 1 7
7 1 2 3 4 5 6 6p5lem ( 9 + 9 ) = 1 8