Metamath Proof Explorer


Theorem 9t5e45

Description: 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9t5e45 ( 9 · 5 ) = 4 5

Proof

Step Hyp Ref Expression
1 9nn0 9 ∈ ℕ0
2 4nn0 4 ∈ ℕ0
3 df-5 5 = ( 4 + 1 )
4 9t4e36 ( 9 · 4 ) = 3 6
5 3nn0 3 ∈ ℕ0
6 6nn0 6 ∈ ℕ0
7 eqid 3 6 = 3 6
8 3p1e4 ( 3 + 1 ) = 4
9 5nn0 5 ∈ ℕ0
10 1 nn0cni 9 ∈ ℂ
11 6 nn0cni 6 ∈ ℂ
12 9p6e15 ( 9 + 6 ) = 1 5
13 10 11 12 addcomli ( 6 + 9 ) = 1 5
14 5 6 1 7 8 9 13 decaddci ( 3 6 + 9 ) = 4 5
15 1 2 3 4 14 4t3lem ( 9 · 5 ) = 4 5