Metamath Proof Explorer


Theorem 9t8e72

Description: 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9t8e72 ( 9 · 8 ) = 7 2

Proof

Step Hyp Ref Expression
1 9nn0 9 ∈ ℕ0
2 7nn0 7 ∈ ℕ0
3 df-8 8 = ( 7 + 1 )
4 9t7e63 ( 9 · 7 ) = 6 3
5 6nn0 6 ∈ ℕ0
6 3nn0 3 ∈ ℕ0
7 eqid 6 3 = 6 3
8 6p1e7 ( 6 + 1 ) = 7
9 2nn0 2 ∈ ℕ0
10 9cn 9 ∈ ℂ
11 3cn 3 ∈ ℂ
12 9p3e12 ( 9 + 3 ) = 1 2
13 10 11 12 addcomli ( 3 + 9 ) = 1 2
14 5 6 1 7 8 9 13 decaddci ( 6 3 + 9 ) = 7 2
15 1 2 3 4 14 4t3lem ( 9 · 8 ) = 7 2