Metamath Proof Explorer


Theorem 9t9e81

Description: 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9t9e81 ( 9 · 9 ) = 8 1

Proof

Step Hyp Ref Expression
1 9nn0 9 ∈ ℕ0
2 8nn0 8 ∈ ℕ0
3 df-9 9 = ( 8 + 1 )
4 9t8e72 ( 9 · 8 ) = 7 2
5 7nn0 7 ∈ ℕ0
6 2nn0 2 ∈ ℕ0
7 eqid 7 2 = 7 2
8 7p1e8 ( 7 + 1 ) = 8
9 1nn0 1 ∈ ℕ0
10 9cn 9 ∈ ℂ
11 2cn 2 ∈ ℂ
12 9p2e11 ( 9 + 2 ) = 1 1
13 10 11 12 addcomli ( 2 + 9 ) = 1 1
14 5 6 1 7 8 9 13 decaddci ( 7 2 + 9 ) = 8 1
15 1 2 3 4 14 4t3lem ( 9 · 9 ) = 8 1