Metamath Proof Explorer


Theorem a2and

Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Hypotheses a2and.1 ( 𝜑 → ( ( 𝜓𝜌 ) → ( 𝜏𝜃 ) ) )
a2and.2 ( 𝜑 → ( ( 𝜓𝜌 ) → 𝜒 ) )
Assertion a2and ( 𝜑 → ( ( ( 𝜓𝜒 ) → 𝜏 ) → ( ( 𝜓𝜌 ) → 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 a2and.1 ( 𝜑 → ( ( 𝜓𝜌 ) → ( 𝜏𝜃 ) ) )
2 a2and.2 ( 𝜑 → ( ( 𝜓𝜌 ) → 𝜒 ) )
3 2 expd ( 𝜑 → ( 𝜓 → ( 𝜌𝜒 ) ) )
4 3 imdistand ( 𝜑 → ( ( 𝜓𝜌 ) → ( 𝜓𝜒 ) ) )
5 imim1 ( ( ( 𝜓𝜒 ) → 𝜏 ) → ( ( 𝜏𝜃 ) → ( ( 𝜓𝜒 ) → 𝜃 ) ) )
6 5 com3l ( ( 𝜏𝜃 ) → ( ( 𝜓𝜒 ) → ( ( ( 𝜓𝜒 ) → 𝜏 ) → 𝜃 ) ) )
7 1 4 6 syl6c ( 𝜑 → ( ( 𝜓𝜌 ) → ( ( ( 𝜓𝜒 ) → 𝜏 ) → 𝜃 ) ) )
8 7 com23 ( 𝜑 → ( ( ( 𝜓𝜒 ) → 𝜏 ) → ( ( 𝜓𝜌 ) → 𝜃 ) ) )