Description: Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993) Avoid ax-10 . (Revised by GG, 21-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aaan.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| aaan.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | aaan | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aaan.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | aaan.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | 19.26-2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) | |
| 4 | 1 | 19.3 | ⊢ ( ∀ 𝑦 𝜑 ↔ 𝜑 ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑥 𝜑 ) |
| 6 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜓 ↔ ∀ 𝑦 ∀ 𝑥 𝜓 ) | |
| 7 | 2 | 19.3 | ⊢ ( ∀ 𝑥 𝜓 ↔ 𝜓 ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜓 ) |
| 9 | 6 8 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜓 ↔ ∀ 𝑦 𝜓 ) |
| 10 | 5 9 | anbi12i | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
| 11 | 3 10 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |