Description: Obsolete version of aaan as of 21-Nov-2024. (Contributed by NM, 12-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aaan.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| aaan.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | aaanOLD | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aaan.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | aaan.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | 1 | 19.28 | ⊢ ( ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
| 5 | 2 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 𝜓 |
| 6 | 5 | 19.27 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
| 7 | 4 6 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |