Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝔸 ∩ ℝ ) ↔ ( 𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ ) ) |
2 |
|
elaa |
⊢ ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑎 ‘ 𝐴 ) = 0 ) ) |
3 |
|
eldifn |
⊢ ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ¬ 𝑎 ∈ { 0𝑝 } ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ¬ 𝑎 ∈ { 0𝑝 } ) |
5 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) |
6 |
|
fveq1 |
⊢ ( 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) → ( 𝑎 ‘ 𝐴 ) = ( ( ℂ × { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → ( 𝑎 ‘ 𝐴 ) = ( ( ℂ × { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 ) ) |
8 |
|
simpl2 |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → ( 𝑎 ‘ 𝐴 ) = 0 ) |
9 |
|
simpl3 |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → 𝐴 ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → 𝐴 ∈ ℂ ) |
11 |
|
fvex |
⊢ ( 𝑎 ‘ 0 ) ∈ V |
12 |
11
|
fvconst2 |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 ) = ( 𝑎 ‘ 0 ) ) |
13 |
10 12
|
syl |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → ( ( ℂ × { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 ) = ( 𝑎 ‘ 0 ) ) |
14 |
7 8 13
|
3eqtr3rd |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → ( 𝑎 ‘ 0 ) = 0 ) |
15 |
14
|
sneqd |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → { ( 𝑎 ‘ 0 ) } = { 0 } ) |
16 |
15
|
xpeq2d |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → ( ℂ × { ( 𝑎 ‘ 0 ) } ) = ( ℂ × { 0 } ) ) |
17 |
5 16
|
eqtrd |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → 𝑎 = ( ℂ × { 0 } ) ) |
18 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
19 |
17 18
|
eqtr4di |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → 𝑎 = 0𝑝 ) |
20 |
|
velsn |
⊢ ( 𝑎 ∈ { 0𝑝 } ↔ 𝑎 = 0𝑝 ) |
21 |
19 20
|
sylibr |
⊢ ( ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) ∧ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) → 𝑎 ∈ { 0𝑝 } ) |
22 |
4 21
|
mtand |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ¬ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) |
23 |
|
eldifi |
⊢ ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → 𝑎 ∈ ( Poly ‘ ℤ ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → 𝑎 ∈ ( Poly ‘ ℤ ) ) |
25 |
|
0dgrb |
⊢ ( 𝑎 ∈ ( Poly ‘ ℤ ) → ( ( deg ‘ 𝑎 ) = 0 ↔ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ( ( deg ‘ 𝑎 ) = 0 ↔ 𝑎 = ( ℂ × { ( 𝑎 ‘ 0 ) } ) ) ) |
27 |
22 26
|
mtbird |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ¬ ( deg ‘ 𝑎 ) = 0 ) |
28 |
|
dgrcl |
⊢ ( 𝑎 ∈ ( Poly ‘ ℤ ) → ( deg ‘ 𝑎 ) ∈ ℕ0 ) |
29 |
24 28
|
syl |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ( deg ‘ 𝑎 ) ∈ ℕ0 ) |
30 |
|
elnn0 |
⊢ ( ( deg ‘ 𝑎 ) ∈ ℕ0 ↔ ( ( deg ‘ 𝑎 ) ∈ ℕ ∨ ( deg ‘ 𝑎 ) = 0 ) ) |
31 |
29 30
|
sylib |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ( ( deg ‘ 𝑎 ) ∈ ℕ ∨ ( deg ‘ 𝑎 ) = 0 ) ) |
32 |
|
orel2 |
⊢ ( ¬ ( deg ‘ 𝑎 ) = 0 → ( ( ( deg ‘ 𝑎 ) ∈ ℕ ∨ ( deg ‘ 𝑎 ) = 0 ) → ( deg ‘ 𝑎 ) ∈ ℕ ) ) |
33 |
27 31 32
|
sylc |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ( deg ‘ 𝑎 ) ∈ ℕ ) |
34 |
|
eqid |
⊢ ( deg ‘ 𝑎 ) = ( deg ‘ 𝑎 ) |
35 |
|
simp3 |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
36 |
|
simp2 |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ( 𝑎 ‘ 𝐴 ) = 0 ) |
37 |
34 24 33 35 36
|
aaliou |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑘 = ( deg ‘ 𝑎 ) → ( 𝑞 ↑ 𝑘 ) = ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑘 = ( deg ‘ 𝑎 ) → ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) = ( 𝑥 / ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) ) |
40 |
39
|
breq1d |
⊢ ( 𝑘 = ( deg ‘ 𝑎 ) → ( ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ↔ ( 𝑥 / ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
41 |
40
|
orbi2d |
⊢ ( 𝑘 = ( deg ‘ 𝑎 ) → ( ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
42 |
41
|
2ralbidv |
⊢ ( 𝑘 = ( deg ‘ 𝑎 ) → ( ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
43 |
42
|
rexbidv |
⊢ ( 𝑘 = ( deg ‘ 𝑎 ) → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
44 |
43
|
rspcev |
⊢ ( ( ( deg ‘ 𝑎 ) ∈ ℕ ∧ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
45 |
33 37 44
|
syl2anc |
⊢ ( ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑎 ‘ 𝐴 ) = 0 ∧ 𝐴 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
46 |
45
|
3exp |
⊢ ( 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( ( 𝑎 ‘ 𝐴 ) = 0 → ( 𝐴 ∈ ℝ → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) ) |
47 |
46
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑎 ‘ 𝐴 ) = 0 → ( 𝐴 ∈ ℝ → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
48 |
2 47
|
simplbiim |
⊢ ( 𝐴 ∈ 𝔸 → ( 𝐴 ∈ ℝ → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
49 |
48
|
imp |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
50 |
1 49
|
sylbi |
⊢ ( 𝐴 ∈ ( 𝔸 ∩ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |