Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝔸 ∩ ℝ ) ↔ ( 𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ ) ) |
2 |
|
aaliou2 |
⊢ ( 𝐴 ∈ ( 𝔸 ∩ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
3 |
1 2
|
sylbir |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
4 |
|
1nn |
⊢ 1 ∈ ℕ |
5 |
|
aacn |
⊢ ( 𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
7 |
6
|
imcld |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
9 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
10 |
5 9
|
syl |
⊢ ( 𝐴 ∈ 𝔸 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
11 |
10
|
necon3bbid |
⊢ ( 𝐴 ∈ 𝔸 → ( ¬ 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) ≠ 0 ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
13 |
8 12
|
absrpcld |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
14 |
13
|
rphalfcld |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
16 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
17 |
|
nnexpcl |
⊢ ( ( 𝑞 ∈ ℕ ∧ 1 ∈ ℕ0 ) → ( 𝑞 ↑ 1 ) ∈ ℕ ) |
18 |
16 17
|
mpan2 |
⊢ ( 𝑞 ∈ ℕ → ( 𝑞 ↑ 1 ) ∈ ℕ ) |
19 |
18
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑞 ↑ 1 ) ∈ ℕ ) |
20 |
19
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑞 ↑ 1 ) ∈ ℝ+ ) |
21 |
15 20
|
rpdivcld |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ∈ ℝ+ ) |
22 |
21
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ∈ ℝ ) |
23 |
15
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ) |
24 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) |
25 |
|
znq |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → ( 𝑝 / 𝑞 ) ∈ ℚ ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℚ ) |
27 |
|
qre |
⊢ ( ( 𝑝 / 𝑞 ) ∈ ℚ → ( 𝑝 / 𝑞 ) ∈ ℝ ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℂ ) |
30 |
24 29
|
subcld |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐴 − ( 𝑝 / 𝑞 ) ) ∈ ℂ ) |
31 |
30
|
abscld |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ∈ ℝ ) |
32 |
19
|
nnge1d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → 1 ≤ ( 𝑞 ↑ 1 ) ) |
33 |
|
1rp |
⊢ 1 ∈ ℝ+ |
34 |
|
rpregt0 |
⊢ ( 1 ∈ ℝ+ → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
35 |
33 34
|
mp1i |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
36 |
20
|
rpregt0d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑞 ↑ 1 ) ∈ ℝ ∧ 0 < ( 𝑞 ↑ 1 ) ) ) |
37 |
15
|
rpregt0d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ∧ 0 < ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) |
38 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( ( 𝑞 ↑ 1 ) ∈ ℝ ∧ 0 < ( 𝑞 ↑ 1 ) ) ∧ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ∧ 0 < ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) → ( 1 ≤ ( 𝑞 ↑ 1 ) ↔ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) ) ) |
39 |
35 36 37 38
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 1 ≤ ( 𝑞 ↑ 1 ) ↔ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) ) ) |
40 |
32 39
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) ) |
41 |
15
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
42 |
41
|
div1d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) |
43 |
40 42
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) |
44 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
45 |
44
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
46 |
|
rphalflt |
⊢ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
47 |
44 46
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
48 |
24 29
|
imsubd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ ( 𝑝 / 𝑞 ) ) ) ) |
49 |
28
|
reim0d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ ( 𝑝 / 𝑞 ) ) = 0 ) |
50 |
49
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ ( 𝑝 / 𝑞 ) ) ) = ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
51 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
52 |
51
|
subid1d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
53 |
48 50 52
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) = ( ℑ ‘ 𝐴 ) ) |
54 |
53
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
55 |
|
absimle |
⊢ ( ( 𝐴 − ( 𝑝 / 𝑞 ) ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ≤ ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
56 |
30 55
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ≤ ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
57 |
54 56
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
58 |
23 45 31 47 57
|
ltletrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
59 |
22 23 31 43 58
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
60 |
59
|
olcd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
61 |
60
|
ralrimivva |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
62 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝑞 ↑ 𝑘 ) = ( 𝑞 ↑ 1 ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑘 = 1 → ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) = ( 𝑥 / ( 𝑞 ↑ 1 ) ) ) |
64 |
63
|
breq1d |
⊢ ( 𝑘 = 1 → ( ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ↔ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
65 |
64
|
orbi2d |
⊢ ( 𝑘 = 1 → ( ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
66 |
65
|
2ralbidv |
⊢ ( 𝑘 = 1 → ( ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
67 |
|
oveq1 |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( 𝑥 / ( 𝑞 ↑ 1 ) ) = ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ) |
68 |
67
|
breq1d |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ↔ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
69 |
68
|
orbi2d |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
70 |
69
|
2ralbidv |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
71 |
66 70
|
rspc2ev |
⊢ ( ( 1 ∈ ℕ ∧ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ∧ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
72 |
4 14 61 71
|
mp3an2i |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
73 |
3 72
|
pm2.61dan |
⊢ ( 𝐴 ∈ 𝔸 → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |