Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑖 ) ) |
3 |
2
|
negeqd |
⊢ ( 𝑘 = 𝑖 → - ( ! ‘ 𝑘 ) = - ( ! ‘ 𝑖 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( 2 ↑ - ( ! ‘ 𝑘 ) ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) ) |
5 |
4
|
cbvsumv |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) = Σ 𝑖 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑖 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑖 ) ) |
7 |
6
|
negeqd |
⊢ ( 𝑗 = 𝑖 → - ( ! ‘ 𝑗 ) = - ( ! ‘ 𝑖 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 2 ↑ - ( ! ‘ 𝑗 ) ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) ) |
9 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝑖 ) ) ∈ V |
10 |
8 1 9
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝑖 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝑖 ) ) = ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) |
12 |
11
|
sumeq2i |
⊢ Σ 𝑖 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑖 ) ) = Σ 𝑖 ∈ ℕ ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) |
13 |
5 12
|
eqtri |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) = Σ 𝑖 ∈ ℕ ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) |
14 |
|
eqid |
⊢ ( 𝑙 ∈ ℕ ↦ Σ 𝑖 ∈ ( 1 ... 𝑙 ) ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) = ( 𝑙 ∈ ℕ ↦ Σ 𝑖 ∈ ( 1 ... 𝑙 ) ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) |
15 |
1 13 14
|
aaliou3lem9 |
⊢ ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ 𝔸 |
16 |
15
|
nelir |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∉ 𝔸 |