Metamath Proof Explorer


Theorem aaliou3

Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014)

Ref Expression
Assertion aaliou3 Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∉ 𝔸

Proof

Step Hyp Ref Expression
1 eqid ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) )
2 fveq2 ( 𝑘 = 𝑖 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑖 ) )
3 2 negeqd ( 𝑘 = 𝑖 → - ( ! ‘ 𝑘 ) = - ( ! ‘ 𝑖 ) )
4 3 oveq2d ( 𝑘 = 𝑖 → ( 2 ↑ - ( ! ‘ 𝑘 ) ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) )
5 4 cbvsumv Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) = Σ 𝑖 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑖 ) )
6 fveq2 ( 𝑗 = 𝑖 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑖 ) )
7 6 negeqd ( 𝑗 = 𝑖 → - ( ! ‘ 𝑗 ) = - ( ! ‘ 𝑖 ) )
8 7 oveq2d ( 𝑗 = 𝑖 → ( 2 ↑ - ( ! ‘ 𝑗 ) ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) )
9 ovex ( 2 ↑ - ( ! ‘ 𝑖 ) ) ∈ V
10 8 1 9 fvmpt ( 𝑖 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) )
11 10 eqcomd ( 𝑖 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝑖 ) ) = ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) )
12 11 sumeq2i Σ 𝑖 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑖 ) ) = Σ 𝑖 ∈ ℕ ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 )
13 5 12 eqtri Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) = Σ 𝑖 ∈ ℕ ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 )
14 eqid ( 𝑙 ∈ ℕ ↦ Σ 𝑖 ∈ ( 1 ... 𝑙 ) ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) = ( 𝑙 ∈ ℕ ↦ Σ 𝑖 ∈ ( 1 ... 𝑙 ) ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) )
15 1 13 14 aaliou3lem9 ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ 𝔸
16 15 nelir Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∉ 𝔸