Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.a |
⊢ 𝐺 = ( 𝑐 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝑐 = 𝐵 → ( 𝑐 − 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ) ) |
5 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ) ∈ V |
6 |
4 1 5
|
fvmpt |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ 𝐵 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝐵 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ) ) |
8 |
|
2rp |
⊢ 2 ∈ ℝ+ |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℕ ) |
10 |
9
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℕ0 ) |
11 |
10
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℤ ) |
13 |
12
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝐴 ) ∈ ℤ ) |
14 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝐴 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
15 |
8 13 14
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
16 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
17 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
18 |
16 17
|
elrpii |
⊢ ( 1 / 2 ) ∈ ℝ+ |
19 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
20 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
21 |
|
zsubcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 − 𝐴 ) ∈ ℤ ) |
22 |
19 20 21
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐵 − 𝐴 ) ∈ ℤ ) |
23 |
|
rpexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ ( 𝐵 − 𝐴 ) ∈ ℤ ) → ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ∈ ℝ+ ) |
24 |
18 22 23
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ∈ ℝ+ ) |
25 |
15 24
|
rpmulcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ) ∈ ℝ+ ) |
26 |
25
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
27 |
7 26
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |