| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.a | ⊢ 𝐺  =  ( 𝑐  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) ) ) ) | 
						
							| 2 |  | aaliou3lem.b | ⊢ 𝐹  =  ( 𝑎  ∈  ℕ  ↦  ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) | 
						
							| 3 |  | eluznn | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝐵  ∈  ℕ ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑎  =  𝐵  →  ( ! ‘ 𝑎 )  =  ( ! ‘ 𝐵 ) ) | 
						
							| 5 | 4 | negeqd | ⊢ ( 𝑎  =  𝐵  →  - ( ! ‘ 𝑎 )  =  - ( ! ‘ 𝐵 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑎  =  𝐵  →  ( 2 ↑ - ( ! ‘ 𝑎 ) )  =  ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) | 
						
							| 7 |  | ovex | ⊢ ( 2 ↑ - ( ! ‘ 𝐵 ) )  ∈  V | 
						
							| 8 | 6 2 7 | fvmpt | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐹 ‘ 𝐵 )  =  ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) | 
						
							| 9 | 3 8 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝐵 )  =  ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) | 
						
							| 10 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 11 | 3 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝐵  ∈  ℕ0 ) | 
						
							| 12 | 11 | faccld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 13 | 12 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 14 | 13 | znegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ! ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 15 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  - ( ! ‘ 𝐵 )  ∈  ℤ )  →  ( 2 ↑ - ( ! ‘ 𝐵 ) )  ∈  ℝ+ ) | 
						
							| 16 | 10 14 15 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝐵 ) )  ∈  ℝ+ ) | 
						
							| 17 | 9 16 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ+ ) | 
						
							| 18 | 17 | rpred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 19 | 17 | rpgt0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  0  <  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑏  =  𝐴  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑏  =  𝐴  →  ( 𝐺 ‘ 𝑏 )  =  ( 𝐺 ‘ 𝐴 ) ) | 
						
							| 22 | 20 21 | breq12d | ⊢ ( 𝑏  =  𝐴  →  ( ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 )  ↔  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( 𝑏  =  𝐴  →  ( ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) )  ↔  ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐺 ‘ 𝐴 ) ) ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑏  =  𝑑  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑑 ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑏  =  𝑑  →  ( 𝐺 ‘ 𝑏 )  =  ( 𝐺 ‘ 𝑑 ) ) | 
						
							| 26 | 24 25 | breq12d | ⊢ ( 𝑏  =  𝑑  →  ( ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 )  ↔  ( 𝐹 ‘ 𝑑 )  ≤  ( 𝐺 ‘ 𝑑 ) ) ) | 
						
							| 27 | 26 | imbi2d | ⊢ ( 𝑏  =  𝑑  →  ( ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) )  ↔  ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝑑 )  ≤  ( 𝐺 ‘ 𝑑 ) ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑏  =  ( 𝑑  +  1 )  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ ( 𝑑  +  1 ) ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑏  =  ( 𝑑  +  1 )  →  ( 𝐺 ‘ 𝑏 )  =  ( 𝐺 ‘ ( 𝑑  +  1 ) ) ) | 
						
							| 30 | 28 29 | breq12d | ⊢ ( 𝑏  =  ( 𝑑  +  1 )  →  ( ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 )  ↔  ( 𝐹 ‘ ( 𝑑  +  1 ) )  ≤  ( 𝐺 ‘ ( 𝑑  +  1 ) ) ) ) | 
						
							| 31 | 30 | imbi2d | ⊢ ( 𝑏  =  ( 𝑑  +  1 )  →  ( ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) )  ↔  ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑑  +  1 ) )  ≤  ( 𝐺 ‘ ( 𝑑  +  1 ) ) ) ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝐺 ‘ 𝑏 )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 34 | 32 33 | breq12d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 )  ↔  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 35 | 34 | imbi2d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) )  ↔  ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 36 |  | nnnn0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 ) | 
						
							| 37 | 36 | faccld | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 38 | 37 | nnzd | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 39 | 38 | znegcld | ⊢ ( 𝐴  ∈  ℕ  →  - ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 40 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  - ( ! ‘ 𝐴 )  ∈  ℤ )  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 41 | 10 39 40 | sylancr | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 42 | 41 | rpred | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 43 | 42 | leidd | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ≤  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) | 
						
							| 44 |  | nncn | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ ) | 
						
							| 45 | 44 | subidd | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) )  =  ( ( 1  /  2 ) ↑ 0 ) ) | 
						
							| 47 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 48 |  | exp0 | ⊢ ( ( 1  /  2 )  ∈  ℂ  →  ( ( 1  /  2 ) ↑ 0 )  =  1 ) | 
						
							| 49 | 47 48 | ax-mp | ⊢ ( ( 1  /  2 ) ↑ 0 )  =  1 | 
						
							| 50 | 46 49 | eqtrdi | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) )  =  1 ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  1 ) ) | 
						
							| 52 | 41 | rpcnd | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 53 | 52 | mulridd | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  1 )  =  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) | 
						
							| 54 | 51 53 | eqtrd | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) )  =  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) | 
						
							| 55 | 43 54 | breqtrrd | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑎  =  𝐴  →  ( ! ‘ 𝑎 )  =  ( ! ‘ 𝐴 ) ) | 
						
							| 57 | 56 | negeqd | ⊢ ( 𝑎  =  𝐴  →  - ( ! ‘ 𝑎 )  =  - ( ! ‘ 𝐴 ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 2 ↑ - ( ! ‘ 𝑎 ) )  =  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) | 
						
							| 59 |  | ovex | ⊢ ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  V | 
						
							| 60 | 58 2 59 | fvmpt | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝐴 )  =  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) | 
						
							| 61 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 62 |  | uzid | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 63 |  | oveq1 | ⊢ ( 𝑐  =  𝐴  →  ( 𝑐  −  𝐴 )  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( 𝑐  =  𝐴  →  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) )  =  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( 𝑐  =  𝐴  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) ) ) | 
						
							| 66 |  | ovex | ⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) )  ∈  V | 
						
							| 67 | 65 1 66 | fvmpt | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐺 ‘ 𝐴 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) ) ) | 
						
							| 68 | 61 62 67 | 3syl | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐺 ‘ 𝐴 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐴  −  𝐴 ) ) ) ) | 
						
							| 69 | 55 60 68 | 3brtr4d | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐺 ‘ 𝐴 ) ) | 
						
							| 70 |  | eluznn | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝑑  ∈  ℕ ) | 
						
							| 71 | 70 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝑑  ∈  ℕ0 ) | 
						
							| 72 | 71 | faccld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝑑 )  ∈  ℕ ) | 
						
							| 73 | 72 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 74 | 73 | znegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ! ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 75 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  - ( ! ‘ 𝑑 )  ∈  ℤ )  →  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  ℝ+ ) | 
						
							| 76 | 10 74 75 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  ℝ+ ) | 
						
							| 77 | 76 | rpred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  ℝ ) | 
						
							| 78 | 76 | rpge0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  0  ≤  ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) | 
						
							| 79 |  | simpl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝐴  ∈  ℕ ) | 
						
							| 80 | 79 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 81 | 80 | faccld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 82 | 81 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 83 | 82 | znegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 84 | 10 83 40 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 85 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 86 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 87 | 85 86 | elrpii | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 88 |  | eluzelz | ⊢ ( 𝑑  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝑑  ∈  ℤ ) | 
						
							| 89 |  | zsubcl | ⊢ ( ( 𝑑  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝑑  −  𝐴 )  ∈  ℤ ) | 
						
							| 90 | 88 61 89 | syl2anr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝑑  −  𝐴 )  ∈  ℤ ) | 
						
							| 91 |  | rpexpcl | ⊢ ( ( ( 1  /  2 )  ∈  ℝ+  ∧  ( 𝑑  −  𝐴 )  ∈  ℤ )  →  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 92 | 87 90 91 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 93 | 84 92 | rpmulcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∈  ℝ+ ) | 
						
							| 94 | 93 | rpred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 95 | 77 78 94 | jca31 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ - ( ! ‘ 𝑑 ) ) )  ∧  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∈  ℝ ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  ∧  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) )  →  ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ - ( ! ‘ 𝑑 ) ) )  ∧  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∈  ℝ ) ) | 
						
							| 97 | 88 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝑑  ∈  ℤ ) | 
						
							| 98 | 74 97 | zmulcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℤ ) | 
						
							| 99 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℤ )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ∈  ℝ+ ) | 
						
							| 100 | 10 98 99 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ∈  ℝ+ ) | 
						
							| 101 | 100 | rpred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ∈  ℝ ) | 
						
							| 102 | 100 | rpge0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  0  ≤  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) | 
						
							| 103 | 85 | a1i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 104 | 101 102 103 | jca31 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ∧  ( 1  /  2 )  ∈  ℝ ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  ∧  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) )  →  ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ∧  ( 1  /  2 )  ∈  ℝ ) ) | 
						
							| 106 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  ∧  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) )  →  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) ) | 
						
							| 107 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 108 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 109 | 72 | nncnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝑑 )  ∈  ℂ ) | 
						
							| 110 | 97 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝑑  ∈  ℂ ) | 
						
							| 111 | 109 110 | mulneg1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  =  - ( ( ! ‘ 𝑑 )  ·  𝑑 ) ) | 
						
							| 112 | 72 70 | nnmulcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℕ ) | 
						
							| 113 | 112 | nnge1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  1  ≤  ( ( ! ‘ 𝑑 )  ·  𝑑 ) ) | 
						
							| 114 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 115 | 112 | nnred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℝ ) | 
						
							| 116 |  | leneg | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℝ )  →  ( 1  ≤  ( ( ! ‘ 𝑑 )  ·  𝑑 )  ↔  - ( ( ! ‘ 𝑑 )  ·  𝑑 )  ≤  - 1 ) ) | 
						
							| 117 | 114 115 116 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 1  ≤  ( ( ! ‘ 𝑑 )  ·  𝑑 )  ↔  - ( ( ! ‘ 𝑑 )  ·  𝑑 )  ≤  - 1 ) ) | 
						
							| 118 | 113 117 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ( ! ‘ 𝑑 )  ·  𝑑 )  ≤  - 1 ) | 
						
							| 119 | 111 118 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ≤  - 1 ) | 
						
							| 120 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 121 |  | eluz | ⊢ ( ( ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℤ  ∧  - 1  ∈  ℤ )  →  ( - 1  ∈  ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ↔  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ≤  - 1 ) ) | 
						
							| 122 | 98 120 121 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - 1  ∈  ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ↔  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ≤  - 1 ) ) | 
						
							| 123 | 119 122 | mpbird | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - 1  ∈  ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) | 
						
							| 124 |  | leexp2a | ⊢ ( ( 2  ∈  ℝ  ∧  1  ≤  2  ∧  - 1  ∈  ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ≤  ( 2 ↑ - 1 ) ) | 
						
							| 125 | 107 108 123 124 | mp3an12i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ≤  ( 2 ↑ - 1 ) ) | 
						
							| 126 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 127 |  | expn1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ - 1 )  =  ( 1  /  2 ) ) | 
						
							| 128 | 126 127 | ax-mp | ⊢ ( 2 ↑ - 1 )  =  ( 1  /  2 ) | 
						
							| 129 | 125 128 | breqtrdi | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ≤  ( 1  /  2 ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  ∧  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ≤  ( 1  /  2 ) ) | 
						
							| 131 |  | lemul12a | ⊢ ( ( ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ - ( ! ‘ 𝑑 ) ) )  ∧  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∈  ℝ )  ∧  ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ∧  ( 1  /  2 )  ∈  ℝ ) )  →  ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∧  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ≤  ( 1  /  2 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ≤  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ·  ( 1  /  2 ) ) ) ) | 
						
							| 132 | 131 | 3impia | ⊢ ( ( ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ - ( ! ‘ 𝑑 ) ) )  ∧  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∈  ℝ )  ∧  ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ∧  ( 1  /  2 )  ∈  ℝ )  ∧  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∧  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  ≤  ( 1  /  2 ) ) )  →  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ≤  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ·  ( 1  /  2 ) ) ) | 
						
							| 133 | 96 105 106 130 132 | syl112anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  ∧  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) )  →  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ≤  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ·  ( 1  /  2 ) ) ) | 
						
							| 134 | 133 | ex | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  →  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ≤  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ·  ( 1  /  2 ) ) ) ) | 
						
							| 135 |  | facp1 | ⊢ ( 𝑑  ∈  ℕ0  →  ( ! ‘ ( 𝑑  +  1 ) )  =  ( ( ! ‘ 𝑑 )  ·  ( 𝑑  +  1 ) ) ) | 
						
							| 136 | 71 135 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ ( 𝑑  +  1 ) )  =  ( ( ! ‘ 𝑑 )  ·  ( 𝑑  +  1 ) ) ) | 
						
							| 137 | 136 | negeqd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ! ‘ ( 𝑑  +  1 ) )  =  - ( ( ! ‘ 𝑑 )  ·  ( 𝑑  +  1 ) ) ) | 
						
							| 138 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 139 |  | addcom | ⊢ ( ( 𝑑  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑑  +  1 )  =  ( 1  +  𝑑 ) ) | 
						
							| 140 | 110 138 139 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝑑  +  1 )  =  ( 1  +  𝑑 ) ) | 
						
							| 141 | 140 | oveq2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  ( 𝑑  +  1 ) )  =  ( - ( ! ‘ 𝑑 )  ·  ( 1  +  𝑑 ) ) ) | 
						
							| 142 |  | peano2cn | ⊢ ( 𝑑  ∈  ℂ  →  ( 𝑑  +  1 )  ∈  ℂ ) | 
						
							| 143 | 110 142 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝑑  +  1 )  ∈  ℂ ) | 
						
							| 144 | 109 143 | mulneg1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  ( 𝑑  +  1 ) )  =  - ( ( ! ‘ 𝑑 )  ·  ( 𝑑  +  1 ) ) ) | 
						
							| 145 | 74 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ! ‘ 𝑑 )  ∈  ℂ ) | 
						
							| 146 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  1  ∈  ℂ ) | 
						
							| 147 | 145 146 110 | adddid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  ( 1  +  𝑑 ) )  =  ( ( - ( ! ‘ 𝑑 )  ·  1 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) | 
						
							| 148 | 145 | mulridd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  1 )  =  - ( ! ‘ 𝑑 ) ) | 
						
							| 149 | 148 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( - ( ! ‘ 𝑑 )  ·  1 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) )  =  ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) | 
						
							| 150 | 147 149 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( - ( ! ‘ 𝑑 )  ·  ( 1  +  𝑑 ) )  =  ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) | 
						
							| 151 | 141 144 150 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ( ! ‘ 𝑑 )  ·  ( 𝑑  +  1 ) )  =  ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) | 
						
							| 152 | 137 151 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ! ‘ ( 𝑑  +  1 ) )  =  ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) | 
						
							| 153 | 152 | oveq2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) )  =  ( 2 ↑ ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) ) | 
						
							| 154 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 155 |  | expaddz | ⊢ ( ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( - ( ! ‘ 𝑑 )  ∈  ℤ  ∧  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℤ ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) ) | 
						
							| 156 | 154 155 | mpan | ⊢ ( ( - ( ! ‘ 𝑑 )  ∈  ℤ  ∧  ( - ( ! ‘ 𝑑 )  ·  𝑑 )  ∈  ℤ )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) ) | 
						
							| 157 | 74 98 156 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑑 )  +  ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) ) | 
						
							| 158 | 153 157 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) ) ) | 
						
							| 159 | 44 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 160 | 110 146 159 | addsubd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 𝑑  +  1 )  −  𝐴 )  =  ( ( 𝑑  −  𝐴 )  +  1 ) ) | 
						
							| 161 | 160 | oveq2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) )  =  ( ( 1  /  2 ) ↑ ( ( 𝑑  −  𝐴 )  +  1 ) ) ) | 
						
							| 162 |  | uznn0sub | ⊢ ( 𝑑  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝑑  −  𝐴 )  ∈  ℕ0 ) | 
						
							| 163 | 162 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝑑  −  𝐴 )  ∈  ℕ0 ) | 
						
							| 164 |  | expp1 | ⊢ ( ( ( 1  /  2 )  ∈  ℂ  ∧  ( 𝑑  −  𝐴 )  ∈  ℕ0 )  →  ( ( 1  /  2 ) ↑ ( ( 𝑑  −  𝐴 )  +  1 ) )  =  ( ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ·  ( 1  /  2 ) ) ) | 
						
							| 165 | 47 163 164 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 1  /  2 ) ↑ ( ( 𝑑  −  𝐴 )  +  1 ) )  =  ( ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ·  ( 1  /  2 ) ) ) | 
						
							| 166 | 161 165 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) )  =  ( ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ·  ( 1  /  2 ) ) ) | 
						
							| 167 | 166 | oveq2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ·  ( 1  /  2 ) ) ) ) | 
						
							| 168 | 84 | rpcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 169 | 92 | rpcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ∈  ℂ ) | 
						
							| 170 | 47 | a1i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 171 | 168 169 170 | mulassd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ·  ( 1  /  2 ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) )  ·  ( 1  /  2 ) ) ) ) | 
						
							| 172 | 167 171 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) )  =  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ·  ( 1  /  2 ) ) ) | 
						
							| 173 | 158 172 | breq12d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) )  ↔  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ·  ( 2 ↑ ( - ( ! ‘ 𝑑 )  ·  𝑑 ) ) )  ≤  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ·  ( 1  /  2 ) ) ) ) | 
						
							| 174 | 134 173 | sylibrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  →  ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) ) ) ) | 
						
							| 175 |  | fveq2 | ⊢ ( 𝑎  =  𝑑  →  ( ! ‘ 𝑎 )  =  ( ! ‘ 𝑑 ) ) | 
						
							| 176 | 175 | negeqd | ⊢ ( 𝑎  =  𝑑  →  - ( ! ‘ 𝑎 )  =  - ( ! ‘ 𝑑 ) ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( 𝑎  =  𝑑  →  ( 2 ↑ - ( ! ‘ 𝑎 ) )  =  ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) | 
						
							| 178 |  | ovex | ⊢ ( 2 ↑ - ( ! ‘ 𝑑 ) )  ∈  V | 
						
							| 179 | 177 2 178 | fvmpt | ⊢ ( 𝑑  ∈  ℕ  →  ( 𝐹 ‘ 𝑑 )  =  ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) | 
						
							| 180 | 70 179 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝑑 )  =  ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) | 
						
							| 181 |  | oveq1 | ⊢ ( 𝑐  =  𝑑  →  ( 𝑐  −  𝐴 )  =  ( 𝑑  −  𝐴 ) ) | 
						
							| 182 | 181 | oveq2d | ⊢ ( 𝑐  =  𝑑  →  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) )  =  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) | 
						
							| 183 | 182 | oveq2d | ⊢ ( 𝑐  =  𝑑  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) ) | 
						
							| 184 |  | ovex | ⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) )  ∈  V | 
						
							| 185 | 183 1 184 | fvmpt | ⊢ ( 𝑑  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐺 ‘ 𝑑 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) ) | 
						
							| 186 | 185 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ 𝑑 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) ) | 
						
							| 187 | 180 186 | breq12d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑑 )  ≤  ( 𝐺 ‘ 𝑑 )  ↔  ( 2 ↑ - ( ! ‘ 𝑑 ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑑  −  𝐴 ) ) ) ) ) | 
						
							| 188 | 70 | peano2nnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝑑  +  1 )  ∈  ℕ ) | 
						
							| 189 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑑  +  1 )  →  ( ! ‘ 𝑎 )  =  ( ! ‘ ( 𝑑  +  1 ) ) ) | 
						
							| 190 | 189 | negeqd | ⊢ ( 𝑎  =  ( 𝑑  +  1 )  →  - ( ! ‘ 𝑎 )  =  - ( ! ‘ ( 𝑑  +  1 ) ) ) | 
						
							| 191 | 190 | oveq2d | ⊢ ( 𝑎  =  ( 𝑑  +  1 )  →  ( 2 ↑ - ( ! ‘ 𝑎 ) )  =  ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) ) ) | 
						
							| 192 |  | ovex | ⊢ ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) )  ∈  V | 
						
							| 193 | 191 2 192 | fvmpt | ⊢ ( ( 𝑑  +  1 )  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑑  +  1 ) )  =  ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) ) ) | 
						
							| 194 | 188 193 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ ( 𝑑  +  1 ) )  =  ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) ) ) | 
						
							| 195 |  | peano2uz | ⊢ ( 𝑑  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝑑  +  1 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 196 |  | oveq1 | ⊢ ( 𝑐  =  ( 𝑑  +  1 )  →  ( 𝑐  −  𝐴 )  =  ( ( 𝑑  +  1 )  −  𝐴 ) ) | 
						
							| 197 | 196 | oveq2d | ⊢ ( 𝑐  =  ( 𝑑  +  1 )  →  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) )  =  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) ) | 
						
							| 198 | 197 | oveq2d | ⊢ ( 𝑐  =  ( 𝑑  +  1 )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) ) ) | 
						
							| 199 |  | ovex | ⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) )  ∈  V | 
						
							| 200 | 198 1 199 | fvmpt | ⊢ ( ( 𝑑  +  1 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐺 ‘ ( 𝑑  +  1 ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) ) ) | 
						
							| 201 | 195 200 | syl | ⊢ ( 𝑑  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐺 ‘ ( 𝑑  +  1 ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) ) ) | 
						
							| 202 | 201 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ ( 𝑑  +  1 ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) ) ) | 
						
							| 203 | 194 202 | breq12d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ ( 𝑑  +  1 ) )  ≤  ( 𝐺 ‘ ( 𝑑  +  1 ) )  ↔  ( 2 ↑ - ( ! ‘ ( 𝑑  +  1 ) ) )  ≤  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( ( 𝑑  +  1 )  −  𝐴 ) ) ) ) ) | 
						
							| 204 | 174 187 203 | 3imtr4d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑑  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑑 )  ≤  ( 𝐺 ‘ 𝑑 )  →  ( 𝐹 ‘ ( 𝑑  +  1 ) )  ≤  ( 𝐺 ‘ ( 𝑑  +  1 ) ) ) ) | 
						
							| 205 | 204 | expcom | ⊢ ( 𝑑  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑑 )  ≤  ( 𝐺 ‘ 𝑑 )  →  ( 𝐹 ‘ ( 𝑑  +  1 ) )  ≤  ( 𝐺 ‘ ( 𝑑  +  1 ) ) ) ) ) | 
						
							| 206 | 205 | a2d | ⊢ ( 𝑑  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝑑 )  ≤  ( 𝐺 ‘ 𝑑 ) )  →  ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑑  +  1 ) )  ≤  ( 𝐺 ‘ ( 𝑑  +  1 ) ) ) ) ) | 
						
							| 207 | 23 27 31 35 69 206 | uzind4i | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 208 | 207 | impcom | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 209 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 210 | 1 | aaliou3lem1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 211 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 𝐺 ‘ 𝐵 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝐵 )  ∈  ( 0 (,] ( 𝐺 ‘ 𝐵 ) )  ↔  ( ( 𝐹 ‘ 𝐵 )  ∈  ℝ  ∧  0  <  ( 𝐹 ‘ 𝐵 )  ∧  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 212 | 209 210 211 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ 𝐵 )  ∈  ( 0 (,] ( 𝐺 ‘ 𝐵 ) )  ↔  ( ( 𝐹 ‘ 𝐵 )  ∈  ℝ  ∧  0  <  ( 𝐹 ‘ 𝐵 )  ∧  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 213 | 18 19 208 212 | mpbir3and | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝐵 )  ∈  ( 0 (,] ( 𝐺 ‘ 𝐵 ) ) ) |