Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.a |
⊢ 𝐺 = ( 𝑐 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) ) |
2 |
|
aaliou3lem.b |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) |
3 |
|
eluznn |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐵 ∈ ℕ ) |
4 |
|
fveq2 |
⊢ ( 𝑎 = 𝐵 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝐵 ) ) |
5 |
4
|
negeqd |
⊢ ( 𝑎 = 𝐵 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝐵 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑎 = 𝐵 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) |
7 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝐵 ) ) ∈ V |
8 |
6 2 7
|
fvmpt |
⊢ ( 𝐵 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) = ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) |
9 |
3 8
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) = ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) |
10 |
|
2rp |
⊢ 2 ∈ ℝ+ |
11 |
3
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐵 ∈ ℕ0 ) |
12 |
11
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐵 ) ∈ ℕ ) |
13 |
12
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐵 ) ∈ ℤ ) |
14 |
13
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝐵 ) ∈ ℤ ) |
15 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝐵 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝐵 ) ) ∈ ℝ+ ) |
16 |
10 14 15
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝐵 ) ) ∈ ℝ+ ) |
17 |
9 16
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ+ ) |
18 |
17
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
19 |
17
|
rpgt0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 < ( 𝐹 ‘ 𝐵 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝐴 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝐴 ) ) |
22 |
20 21
|
breq12d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑑 ) ) |
26 |
24 25
|
breq12d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝑑 + 1 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) |
30 |
28 29
|
breq12d |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) |
31 |
30
|
imbi2d |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝐵 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝐵 ) ) |
34 |
32 33
|
breq12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) ) |
36 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
37 |
36
|
faccld |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℕ ) |
38 |
37
|
nnzd |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℤ ) |
39 |
38
|
znegcld |
⊢ ( 𝐴 ∈ ℕ → - ( ! ‘ 𝐴 ) ∈ ℤ ) |
40 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝐴 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
41 |
10 39 40
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
42 |
41
|
rpred |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ ) |
43 |
42
|
leidd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ≤ ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
44 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
45 |
44
|
subidd |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 𝐴 ) = 0 ) |
46 |
45
|
oveq2d |
⊢ ( 𝐴 ∈ ℕ → ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ 0 ) ) |
47 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
48 |
|
exp0 |
⊢ ( ( 1 / 2 ) ∈ ℂ → ( ( 1 / 2 ) ↑ 0 ) = 1 ) |
49 |
47 48
|
ax-mp |
⊢ ( ( 1 / 2 ) ↑ 0 ) = 1 |
50 |
46 49
|
eqtrdi |
⊢ ( 𝐴 ∈ ℕ → ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) = 1 ) |
51 |
50
|
oveq2d |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 1 ) ) |
52 |
41
|
rpcnd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ) |
53 |
52
|
mulid1d |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 1 ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
54 |
51 53
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
55 |
43 54
|
breqtrrd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝐴 ) ) |
57 |
56
|
negeqd |
⊢ ( 𝑎 = 𝐴 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝐴 ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
59 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ V |
60 |
58 2 59
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
61 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
62 |
|
uzid |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
63 |
|
oveq1 |
⊢ ( 𝑐 = 𝐴 → ( 𝑐 − 𝐴 ) = ( 𝐴 − 𝐴 ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
66 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ∈ V |
67 |
65 1 66
|
fvmpt |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ 𝐴 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
68 |
61 62 67
|
3syl |
⊢ ( 𝐴 ∈ ℕ → ( 𝐺 ‘ 𝐴 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
69 |
55 60 68
|
3brtr4d |
⊢ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) |
70 |
|
eluznn |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℕ ) |
71 |
70
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℕ0 ) |
72 |
71
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝑑 ) ∈ ℕ ) |
73 |
72
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝑑 ) ∈ ℤ ) |
74 |
73
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝑑 ) ∈ ℤ ) |
75 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝑑 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ+ ) |
76 |
10 74 75
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ+ ) |
77 |
76
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ) |
78 |
76
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
79 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℕ ) |
80 |
79
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℕ0 ) |
81 |
80
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℕ ) |
82 |
81
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℤ ) |
83 |
82
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝐴 ) ∈ ℤ ) |
84 |
10 83 40
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
85 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
86 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
87 |
85 86
|
elrpii |
⊢ ( 1 / 2 ) ∈ ℝ+ |
88 |
|
eluzelz |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑑 ∈ ℤ ) |
89 |
|
zsubcl |
⊢ ( ( 𝑑 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑑 − 𝐴 ) ∈ ℤ ) |
90 |
88 61 89
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 − 𝐴 ) ∈ ℤ ) |
91 |
|
rpexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ ( 𝑑 − 𝐴 ) ∈ ℤ ) → ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ∈ ℝ+ ) |
92 |
87 90 91
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ∈ ℝ+ ) |
93 |
84 92
|
rpmulcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ+ ) |
94 |
93
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) |
95 |
77 78 94
|
jca31 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ) |
96 |
95
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ) |
97 |
88
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℤ ) |
98 |
74 97
|
zmulcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) |
99 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ+ ) |
100 |
10 98 99
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ+ ) |
101 |
100
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ) |
102 |
100
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
103 |
85
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 1 / 2 ) ∈ ℝ ) |
104 |
101 102 103
|
jca31 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ) |
105 |
104
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ) |
106 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
107 |
|
2re |
⊢ 2 ∈ ℝ |
108 |
|
1le2 |
⊢ 1 ≤ 2 |
109 |
72
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝑑 ) ∈ ℂ ) |
110 |
97
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℂ ) |
111 |
109 110
|
mulneg1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 𝑑 ) = - ( ( ! ‘ 𝑑 ) · 𝑑 ) ) |
112 |
72 70
|
nnmulcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℕ ) |
113 |
112
|
nnge1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 1 ≤ ( ( ! ‘ 𝑑 ) · 𝑑 ) ) |
114 |
|
1re |
⊢ 1 ∈ ℝ |
115 |
112
|
nnred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℝ ) |
116 |
|
leneg |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℝ ) → ( 1 ≤ ( ( ! ‘ 𝑑 ) · 𝑑 ) ↔ - ( ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
117 |
114 115 116
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 1 ≤ ( ( ! ‘ 𝑑 ) · 𝑑 ) ↔ - ( ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
118 |
113 117
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) |
119 |
111 118
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) |
120 |
|
neg1z |
⊢ - 1 ∈ ℤ |
121 |
|
eluz |
⊢ ( ( ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ∧ - 1 ∈ ℤ ) → ( - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ↔ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
122 |
98 120 121
|
sylancl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ↔ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
123 |
119 122
|
mpbird |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
124 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 2 ↑ - 1 ) ) |
125 |
107 108 123 124
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 2 ↑ - 1 ) ) |
126 |
|
2cn |
⊢ 2 ∈ ℂ |
127 |
|
expn1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ - 1 ) = ( 1 / 2 ) ) |
128 |
126 127
|
ax-mp |
⊢ ( 2 ↑ - 1 ) = ( 1 / 2 ) |
129 |
125 128
|
breqtrdi |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) |
130 |
129
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) |
131 |
|
lemul12a |
⊢ ( ( ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ∧ ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∧ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) ) |
132 |
131
|
3impia |
⊢ ( ( ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ∧ ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ∧ ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∧ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) |
133 |
96 105 106 130 132
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) |
134 |
133
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) ) |
135 |
|
facp1 |
⊢ ( 𝑑 ∈ ℕ0 → ( ! ‘ ( 𝑑 + 1 ) ) = ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
136 |
71 135
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ ( 𝑑 + 1 ) ) = ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
137 |
136
|
negeqd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ ( 𝑑 + 1 ) ) = - ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
138 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
139 |
|
addcom |
⊢ ( ( 𝑑 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑑 + 1 ) = ( 1 + 𝑑 ) ) |
140 |
110 138 139
|
sylancl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 + 1 ) = ( 1 + 𝑑 ) ) |
141 |
140
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) = ( - ( ! ‘ 𝑑 ) · ( 1 + 𝑑 ) ) ) |
142 |
|
peano2cn |
⊢ ( 𝑑 ∈ ℂ → ( 𝑑 + 1 ) ∈ ℂ ) |
143 |
110 142
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 + 1 ) ∈ ℂ ) |
144 |
109 143
|
mulneg1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) = - ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
145 |
74
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝑑 ) ∈ ℂ ) |
146 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 1 ∈ ℂ ) |
147 |
145 146 110
|
adddid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 1 + 𝑑 ) ) = ( ( - ( ! ‘ 𝑑 ) · 1 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
148 |
145
|
mulid1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 1 ) = - ( ! ‘ 𝑑 ) ) |
149 |
148
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( - ( ! ‘ 𝑑 ) · 1 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
150 |
147 149
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 1 + 𝑑 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
151 |
141 144 150
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
152 |
137 151
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ ( 𝑑 + 1 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
153 |
152
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) = ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
154 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
155 |
|
expaddz |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( - ( ! ‘ 𝑑 ) ∈ ℤ ∧ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
156 |
154 155
|
mpan |
⊢ ( ( - ( ! ‘ 𝑑 ) ∈ ℤ ∧ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
157 |
74 98 156
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
158 |
153 157
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
159 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
160 |
110 146 159
|
addsubd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝑑 + 1 ) − 𝐴 ) = ( ( 𝑑 − 𝐴 ) + 1 ) ) |
161 |
160
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( ( 𝑑 − 𝐴 ) + 1 ) ) ) |
162 |
|
uznn0sub |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑑 − 𝐴 ) ∈ ℕ0 ) |
163 |
162
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 − 𝐴 ) ∈ ℕ0 ) |
164 |
|
expp1 |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( 𝑑 − 𝐴 ) ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 − 𝐴 ) + 1 ) ) = ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) |
165 |
47 163 164
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 − 𝐴 ) + 1 ) ) = ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) |
166 |
161 165
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) = ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) |
167 |
166
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) ) |
168 |
84
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ) |
169 |
92
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ∈ ℂ ) |
170 |
47
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 1 / 2 ) ∈ ℂ ) |
171 |
168 169 170
|
mulassd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) ) |
172 |
167 171
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) |
173 |
158 172
|
breq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ↔ ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) ) |
174 |
134 173
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) → ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) ) |
175 |
|
fveq2 |
⊢ ( 𝑎 = 𝑑 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝑑 ) ) |
176 |
175
|
negeqd |
⊢ ( 𝑎 = 𝑑 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝑑 ) ) |
177 |
176
|
oveq2d |
⊢ ( 𝑎 = 𝑑 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
178 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ V |
179 |
177 2 178
|
fvmpt |
⊢ ( 𝑑 ∈ ℕ → ( 𝐹 ‘ 𝑑 ) = ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
180 |
70 179
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑑 ) = ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
181 |
|
oveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 − 𝐴 ) = ( 𝑑 − 𝐴 ) ) |
182 |
181
|
oveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) |
183 |
182
|
oveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
184 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ V |
185 |
183 1 184
|
fvmpt |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ 𝑑 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
186 |
185
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑑 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
187 |
180 186
|
breq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ↔ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) ) |
188 |
70
|
peano2nnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 + 1 ) ∈ ℕ ) |
189 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ! ‘ 𝑎 ) = ( ! ‘ ( 𝑑 + 1 ) ) ) |
190 |
189
|
negeqd |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → - ( ! ‘ 𝑎 ) = - ( ! ‘ ( 𝑑 + 1 ) ) ) |
191 |
190
|
oveq2d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ) |
192 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ∈ V |
193 |
191 2 192
|
fvmpt |
⊢ ( ( 𝑑 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑑 + 1 ) ) = ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ) |
194 |
188 193
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ ( 𝑑 + 1 ) ) = ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ) |
195 |
|
peano2uz |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑑 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
196 |
|
oveq1 |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( 𝑐 − 𝐴 ) = ( ( 𝑑 + 1 ) − 𝐴 ) ) |
197 |
196
|
oveq2d |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) |
198 |
197
|
oveq2d |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
199 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ∈ V |
200 |
198 1 199
|
fvmpt |
⊢ ( ( 𝑑 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ ( 𝑑 + 1 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
201 |
195 200
|
syl |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ ( 𝑑 + 1 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
202 |
201
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑑 + 1 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
203 |
194 202
|
breq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ↔ ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) ) |
204 |
174 187 203
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) |
205 |
204
|
expcom |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ∈ ℕ → ( ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) ) |
206 |
205
|
a2d |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ) → ( 𝐴 ∈ ℕ → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) ) |
207 |
23 27 31 35 69 206
|
uzind4i |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) |
208 |
207
|
impcom |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) |
209 |
|
0xr |
⊢ 0 ∈ ℝ* |
210 |
1
|
aaliou3lem1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
211 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) ) |
212 |
209 210 211
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) ) |
213 |
18 19 208 212
|
mpbir3and |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝐵 ) ) ) |