| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.a | ⊢ 𝐺  =  ( 𝑐  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) ) ) ) | 
						
							| 2 |  | aaliou3lem.b | ⊢ 𝐹  =  ( 𝑎  ∈  ℕ  ↦  ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( ℤ≥ ‘ 𝐴 )  =  ( ℤ≥ ‘ 𝐴 ) | 
						
							| 4 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 5 |  | uzid | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 7 | 1 | aaliou3lem1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ 𝑏 )  ∈  ℝ ) | 
						
							| 8 | 1 2 | aaliou3lem2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  ( 0 (,] ( 𝐺 ‘ 𝑏 ) ) ) | 
						
							| 9 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 10 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 𝐺 ‘ 𝑏 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑏 )  ∈  ( 0 (,] ( 𝐺 ‘ 𝑏 ) )  ↔  ( ( 𝐹 ‘ 𝑏 )  ∈  ℝ  ∧  0  <  ( 𝐹 ‘ 𝑏 )  ∧  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) ) ) ) | 
						
							| 11 | 9 7 10 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ∈  ( 0 (,] ( 𝐺 ‘ 𝑏 ) )  ↔  ( ( 𝐹 ‘ 𝑏 )  ∈  ℝ  ∧  0  <  ( 𝐹 ‘ 𝑏 )  ∧  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) ) ) ) | 
						
							| 12 | 8 11 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ∈  ℝ  ∧  0  <  ( 𝐹 ‘ 𝑏 )  ∧  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) ) ) | 
						
							| 13 | 12 | simp1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  ℝ ) | 
						
							| 14 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐴  ∈  ℕ  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 16 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 17 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 18 | 16 17 | elrpii | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 19 |  | rprege0 | ⊢ ( ( 1  /  2 )  ∈  ℝ+  →  ( ( 1  /  2 )  ∈  ℝ  ∧  0  ≤  ( 1  /  2 ) ) ) | 
						
							| 20 |  | absid | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  0  ≤  ( 1  /  2 ) )  →  ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) ) | 
						
							| 21 | 18 19 20 | mp2b | ⊢ ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 22 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 23 | 21 22 | eqbrtri | ⊢ ( abs ‘ ( 1  /  2 ) )  <  1 | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐴  ∈  ℕ  →  ( abs ‘ ( 1  /  2 ) )  <  1 ) | 
						
							| 25 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 26 |  | nnnn0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 ) | 
						
							| 27 | 26 | faccld | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnzd | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 29 | 28 | znegcld | ⊢ ( 𝐴  ∈  ℕ  →  - ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 30 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  - ( ! ‘ 𝐴 )  ∈  ℤ )  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 31 | 25 29 30 | sylancr | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 32 | 31 | rpcnd | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 33 | 4 15 24 32 1 | geolim3 | ⊢ ( 𝐴  ∈  ℕ  →  seq 𝐴 (  +  ,  𝐺 )  ⇝  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  −  ( 1  /  2 ) ) ) ) | 
						
							| 34 |  | seqex | ⊢ seq 𝐴 (  +  ,  𝐺 )  ∈  V | 
						
							| 35 |  | ovex | ⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  −  ( 1  /  2 ) ) )  ∈  V | 
						
							| 36 | 34 35 | breldm | ⊢ ( seq 𝐴 (  +  ,  𝐺 )  ⇝  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  −  ( 1  /  2 ) ) )  →  seq 𝐴 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 37 | 33 36 | syl | ⊢ ( 𝐴  ∈  ℕ  →  seq 𝐴 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 38 | 12 | simp2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  0  <  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 39 | 13 38 | elrpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  ℝ+ ) | 
						
							| 40 | 39 | rpge0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  0  ≤  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 41 | 12 | simp3d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝑏 )  ≤  ( 𝐺 ‘ 𝑏 ) ) | 
						
							| 42 | 3 6 7 13 37 40 41 | cvgcmp | ⊢ ( 𝐴  ∈  ℕ  →  seq 𝐴 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 43 |  | eqidd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 44 | 3 3 6 43 39 42 | isumrpcl | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 )  ∈  ℝ+ ) | 
						
							| 45 |  | eqidd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ 𝑏 )  =  ( 𝐺 ‘ 𝑏 ) ) | 
						
							| 46 | 3 4 43 13 45 7 41 42 37 | isumle | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 )  ≤  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐺 ‘ 𝑏 ) ) | 
						
							| 47 | 7 | recnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 48 | 3 4 45 47 33 | isumclim | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐺 ‘ 𝑏 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  −  ( 1  /  2 ) ) ) ) | 
						
							| 49 |  | 1mhlfehlf | ⊢ ( 1  −  ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 50 | 49 | oveq2i | ⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  −  ( 1  /  2 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  /  2 ) ) | 
						
							| 51 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 52 |  | mulcl | ⊢ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 )  ∈  ℂ ) | 
						
							| 53 | 32 51 52 | sylancl | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 )  ∈  ℂ ) | 
						
							| 54 | 53 | div1d | ⊢ ( 𝐴  ∈  ℕ  →  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 )  /  1 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 ) ) | 
						
							| 55 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 56 |  | rpcnne0 | ⊢ ( 1  ∈  ℝ+  →  ( 1  ∈  ℂ  ∧  1  ≠  0 ) ) | 
						
							| 57 | 55 56 | ax-mp | ⊢ ( 1  ∈  ℂ  ∧  1  ≠  0 ) | 
						
							| 58 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 59 |  | divdiv2 | ⊢ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℂ  ∧  ( 1  ∈  ℂ  ∧  1  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  /  2 ) )  =  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 )  /  1 ) ) | 
						
							| 60 | 57 58 59 | mp3an23 | ⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℂ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  /  2 ) )  =  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 )  /  1 ) ) | 
						
							| 61 | 32 60 | syl | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  /  2 ) )  =  ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 )  /  1 ) ) | 
						
							| 62 |  | mulcom | ⊢ ( ( 2  ∈  ℂ  ∧  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℂ )  →  ( 2  ·  ( 2 ↑ - ( ! ‘ 𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 ) ) | 
						
							| 63 | 51 32 62 | sylancr | ⊢ ( 𝐴  ∈  ℕ  →  ( 2  ·  ( 2 ↑ - ( ! ‘ 𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  2 ) ) | 
						
							| 64 | 54 61 63 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  /  2 ) )  =  ( 2  ·  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 65 | 50 64 | eqtrid | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  /  ( 1  −  ( 1  /  2 ) ) )  =  ( 2  ·  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 66 | 48 65 | eqtrd | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐺 ‘ 𝑏 )  =  ( 2  ·  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 67 | 46 66 | breqtrd | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 )  ≤  ( 2  ·  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 68 | 42 44 67 | 3jca | ⊢ ( 𝐴  ∈  ℕ  →  ( seq 𝐴 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 )  ∈  ℝ+  ∧  Σ 𝑏  ∈  ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 )  ≤  ( 2  ·  ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) ) |